Category Archives: Philosophy

Philosophy is never too far from physics. It is in their overlap that I expect breakthroughs.

The Unreal UniverseSeeing Light in Science and Spirituality

We know that our universe is a bit unreal. The stars we see in the night sky, for instance, are not really there. They may have moved or even died by the time we get to see them. This delay is due to the time it takes for light from the distant stars and galaxies to reach us. We know of this delay.

The same delay in seeing has a lesser known manifestation in the way we perceive moving objects. It distorts our perception such that something coming towards us would look as though it is coming in faster. Strange as it may sound, this effect has been observed in astrophysical studies. Some of the heavenly bodies do look as though they are moving several times the speed of light, while theirrealspeed is probably a lot lower.

Now, this effect raises an interesting questionwhat is therealspeed? If seeing is believing, the speed we see should be the real speed. Then again, we know of the light travel time effect. So we should correct the speed we see before believing it. What then doesseeingmean? When we say we see something, what do we really mean?

Light in Physics

Seeing involves light, obviously. The finite speed of light influences and distorts the way we see things. This fact should hardly come as a surprise because we do know that things are not as we see them. The sun that we see is already eight minutes old by the time we see it. This delay is not a big deal; if we want to know what is going on at the sun now, all we have to do is to wait for eight minutes. We, nonetheless, have tocorrectfor the distortions in our perception due to the finite speed of light before we can trust what we see.

What is surprising (and seldom highlighted) is that when it comes to sensing motion, we cannot back-calculate the same way we take out the delay in seeing the sun. If we see a celestial body moving at an improbably high speed, we cannot figure out how fast and in what direction it isreallymoving without making further assumptions. One way of handling this difficulty is to ascribe the distortions in our perception to the fundamental properties of the arena of physicsspace and time. Another course of action is to accept the disconnection between our perception and the underlyingrealityand deal with it in some way.

Einstein chose the first route. In his groundbreaking paper over a hundred years ago, he introduced the special theory of relativity, in which he attributed the manifestations of the finite speed of light to the fundamental properties of space and time. One core idea in special relativity (SR) is that the notion of simultaneity needs to be redefined because it takes some time for light from an event at a distant place to reach us, and we become aware of the event. The concept ofNowdoesn’t make much sense, as we saw, when we speak of an event happening in the sun, for instance. Simultaneity is relative.

Einstein defined simultaneity using the instants in time we detect the event. Detection, as he defined it, involves a round-trip travel of light similar to Radar detection. We send out light, and look at the reflection. If the reflected light from two events reaches us at the same instant, they are simultaneous.
Another way of defining simultaneity is using sensingwe can call two events simultaneous if the light from them reaches us at the same instant. In other words, we can use the light generated by the objects under observation rather than sending light to them and looking at the reflection.

This difference may sound like a hair-splitting technicality, but it does make an enormous difference in the predictions we can make. Einstein’s choice results in a mathematical picture that has many desirable properties, thereby making further development elegant.

The other possibility has an advantage when it comes to describing objects in motion because it corresponds better with how we measure them. We don’t use Radar to see the stars in motion; we merely sense the light (or other radiation) coming from them. But this choice of using a sensory paradigm, rather than Radar-like detection, to describe the universe results in a slightly uglier mathematical picture.

The mathematical difference spawns different philosophical stances, which in turn percolate to the understanding of our physical picture of reality. As an illustration, let us look at an example from astrophysics. Suppose we observe (through a radio telescope, for instance) two objects in the sky, roughly of the same shape and properties. The only thing we know for sure is that the radio waves from two different points in the sky reach the radio telescope at the same instant in time. We can guess that the waves started their journey quite a while ago.

For symmetric objects, if we assume (as we routinely do) that the waves started the journey roughly at the same instant in time, we end up with a picture of tworealsymmetric lobes more or less the way see them.

But there is different possibility that the waves originated from the same object (which is in motion) at two different instants in time, reaching the telescope at the same instant. This possibility explains some spectral and temporal properties of such symmetric radio sources, which is what I mathematically described in a recent physics article. Now, which of these two pictures should we take as real? Two symmetric objects as we see them or one object moving in such a way as to give us that impression? Does it really matter which one isreal”? Doesrealmean anything in this context?

The philosophical stance in implied in special relativity answers this question unequivocally. There is an unambiguous physical reality from which we get the two symmetric radio sources, although it takes a bit of mathematical work to get to it. The mathematics rules out the possibility of a single object moving in such a fashion as to mimic two objects. Essentially, what we see is what is out there.

On the other hand, if we define simultaneity using concurrent arrival of light, we will be forced to admit the exact opposite. What we see is pretty far from what is out there. We will confess that we cannot unambiguously decouple the distortions due to the constraints in perception (the finite speed of light being the constraint of interest here) from what we see. There are multiple physical realities that can result in the same perceptual picture. The only philosophical stance that makes sense is the one that disconnects the sensed reality and the causes behind what is being sensed.

This disconnect is not uncommon in philosophical schools of thought. Phenomenalism, for instance, holds the view that space and time are not objective realities. They are merely the medium of our perception. All the phenomena that happen in space and time are merely bundles of our perception. In other words, space and time are cognitive constructs arising from perception. Thus, all the physical properties that we ascribe to space and time can only apply to the phenomenal reality (the reality as we sense it). The noumenal reality (which holds the physical causes of our perception), by contrast, remains beyond our cognitive reach.

The ramifications of the two different philosophical stances described above are tremendous. Since modern physics seems to embrace a non-phenomenalistic view of space and time, it finds itself at odds with that branch of philosophy. This chasm between philosophy and physics has grown to such a degree that the Nobel prize winning physicist, Steven Weinberg, wondered (in his bookDreams of a Final Theory”) why the contribution from philosophy to physics have been so surprisingly small. It also prompts philosophers to make statements like, “Whether ‘noumenal reality causes phenomenal realityor whether ‘noumenal reality is independent of our sensing itor whether ‘we sense noumenal reality,’ the problem remains that the concept of noumenal reality is a totally redundant concept for the analysis of science.

One, almost accidental, difficulty in redefining the effects of the finite speed of light as the properties of space and time is that any effect that we do understand gets instantly relegated to the realm of optical illusions. For instance, the eight-minute delay in seeing the sun, because we readily understand it and disassociate from our perception using simple arithmetic, is considered a mere optical illusion. However, the distortions in our perception of fast moving objects, although originating from the same source are considered a property of space and time because they are more complex.

We have to come to terms with the fact that when it comes to seeing the universe, there is no such thing as an optical illusion, which is probably what Goethe pointed out when he said, “Optical illusion is optical truth.

The distinction (or lack thereof) between optical illusion and truth is one of the oldest debates in philosophy. After all, it is about the distinction between knowledge and reality. Knowledge is considered our view about something that, in reality, isactually the case.In other words, knowledge is a reflection, or a mental image of something external, as shown in the figure below.
Commonsense view of reality
In this picture, the black arrow represents the process of creating knowledge, which includes perception, cognitive activities, and the exercise of pure reason. This is the picture that physics has come to accept.
Alternate view of reality
While acknowledging that our perception may be imperfect, physics assumes that we can get closer and closer to the external reality through increasingly finer experimentation, and, more importantly, through better theorization. The Special and General Theories of Relativity are examples of brilliant applications of this view of reality where simple physical principles are relentlessly pursued using formidable machine of pure reason to their logically inevitable conclusions.

But there is another, alternative view of knowledge and reality that has been around for a long time. This is the view that regards perceived reality as an internal cognitive representation of our sensory inputs, as illustrated below.

In this view, knowledge and perceived reality are both internal cognitive constructs, although we have come to think of them as separate. What is external is not the reality as we perceive it, but an unknowable entity giving rise to the physical causes behind sensory inputs. In the illustration, the first arrow represents the process of sensing, and the second arrow represents the cognitive and logical reasoning steps. In order to apply this view of reality and knowledge, we have to guess the nature of the absolute reality, unknowable as it is. One possible candidate for the absolute reality is Newtonian mechanics, which gives a reasonable prediction for our perceived reality.

To summarize, when we try to handle the distortions due to perception, we have two options, or two possible philosophical stances. One is to accept the distortions as part of our space and time, as SR does. The other option is to assume that there is ahigherreality distinct from our sensed reality, whose properties we can only conjecture. In other words, one option is to live with the distortion, while the other is to propose educated guesses for the higher reality. Neither of these options is particularly attractive. But the guessing path is similar to the view accepted in phenomenalism. It also leads naturally to how reality is viewed in cognitive neuroscience, which studies the biological mechanisms behind cognition.

In my view, the two options are not inherently distinct. The philosophical stance of SR can be thought of as coming from a deep understanding that space is merely a phenomenal construct. If the sense modality introduces distortions in the phenomenal picture, we may argue that one sensible way of handling it is to redefine the properties of the phenomenal reality.

Role of Light in Our Reality

From the perspective of cognitive neuroscience, everything we see, sense, feel and think is the result of the neuronal interconnections in our brain and the tiny electrical signals in them. This view must be right. What else is there? All our thoughts and worries, knowledge and beliefs, ego and reality, life and deatheverything is merely neuronal firings in the one and half kilograms of gooey, grey material that we call our brain. There is nothing else. Nothing!

In fact, this view of reality in neuroscience is an exact echo of phenomenalism, which considers everything a bundle of perception or mental constructs. Space and time are also cognitive constructs in our brain, like everything else. They are mental pictures our brains concoct out of the sensory inputs that our senses receive. Generated from our sensory perception and fabricated by our cognitive process, the space-time continuum is the arena of physics. Of all our senses, sight is by far the dominant one. The sensory input to sight is light. In a space created by the brain out of the light falling on our retinas (or on the photo sensors of the Hubble telescope), is it a surprise that nothing can travel faster than light?

This philosophical stance is the basis of my book, The Unreal Universe, which explores the common threads binding physics and philosophy. Such philosophical musings usually get a bad rap from us physicists. To physicists, philosophy is an entirely different field, another silo of knowledge. We need to change this belief and appreciate the overlap among different knowledge silos. It is in this overlap that we can expect to find breakthroughs in human thought.

This philosophical grand-standing may sound presumptuous and the veiled self-admonition of physicists understandably unwelcome; but I am holding a trump card. Based on this philosophical stance, I have come up with a radically new model for two astrophysical phenomena, and published it in an article titled, “Are Radio Sources and Gamma Ray Bursts Luminal Booms?” in the well-known International Journal of Modern Physics D in June 2007. This article, which soon became one of the top accessed articles of the journal by Jan 2008, is a direct application of the view that the finite speed of light distorts the way we perceive motion. Because of these distortions, the way we see things is a far cry from the way they are.

We may be tempted to think that we can escape such perceptual constraints by using technological extensions to our senses such as radio telescopes, electron microscopes or spectroscopic speed measurements. After all, these instruments do not haveperceptionper se and should be immune to the human weaknesses we suffer from. But these soulless instruments also measure our universe using information carriers limited to the speed of light. We, therefore, cannot escape the basic constraints of our perception even when we use modern instruments. In other words, the Hubble telescope may see a billion light years farther than our naked eyes, but what it sees is still a billion years older than what our eyes see.

Our reality, whether technologically enhanced or built upon direct sensory inputs, is the end result of our perceptual process. To the extent that our long range perception is based on light (and is therefore limited to its speed), we get only a distorted picture of the universe.

Light in Philosophy and Spirituality

The twist to this story of light and reality is that we seem to have known all this for a long time. Classical philosophical schools seem to have thought along lines very similar to Einstein’s thought experiment.

Once we appreciate the special place accorded to light in modern science, we have to ask ourselves how different our universe would have been in the absence of light. Of course, light is only a label we attach to a sensory experience. Therefore, to be more accurate, we have to ask a different question: if we did not have any senses that responded to what we call light, would that affect the form of the universe?

The immediate answer from any normal (that is, non-philosophical) person is that it is obvious. If everybody is blind, everybody is blind. But the existence of the universe is independent of whether we can see it or not. Is it though? What does it mean to say the universe exists if we cannot sense it? Ahthe age-old conundrum of the falling tree in a deserted forest. Remember, the universe is a cognitive construct or a mental representation of the light input to our eyes. It is notout there,” but in the neurons of our brain, as everything else is. In the absence of light in our eyes, there is no input to be represented, ergo no universe.

If we had sensed the universe using modalities that operated at other speeds (echolocation, for instance), it is those speeds that would have figured in the fundamental properties of space and time. This is the inescapable conclusion from phenomenalism.

The role of light in creating our reality or universe is at the heart of Western religious thinking. A universe devoid of light is not simply a world where you have switched off the lights. It is indeed a universe devoid of itself, a universe that doesn’t exist. It is in this context that we have to understand the wisdom behind the statement thatthe earth was without form, and voiduntil God caused light to be, by sayingLet there be light.

The Quran also says, “Allah is the light of the heavens and the earth,” which is mirrored in one of the ancient Hindu writings: “Lead me from darkness to light, lead me from the unreal to the real.The role of light in taking us from the unreal void (the nothingness) to a reality was indeed understood for a long, long time. Is it possible that the ancient saints and prophets knew things that we are only now beginning to uncover with all our supposed advances in knowledge?

I know I may be rushing in where angels fear to tread, for reinterpreting the scriptures is a dangerous game. Such foreign interpretations are seldom welcome in the theological circles. But I seek refuge in the fact that I am looking for concurrence in the metaphysical views of spiritual philosophies, without diminishing their mystical or theological value.

The parallels between the noumenal-phenomenal distinction in phenomenalism and the Brahman-Maya distinction in Advaita are hard to ignore. This time-tested wisdom on the nature of reality from the repertoire of spirituality is now reinvented in modern neuroscience, which treats reality as a cognitive representation created by the brain. The brain uses the sensory inputs, memory, consciousness, and even language as ingredients in concocting our sense of reality. This view of reality, however, is something physics is yet to come to terms with. But to the extent that its arena (space and time) is a part of reality, physics is not immune to philosophy.

As we push the boundaries of our knowledge further and further, we are beginning to discover hitherto unsuspected and often surprising interconnections between different branches of human efforts. In the final analysis, how can the diverse domains of our knowledge be independent of each other when all our knowledge resides in our brain? Knowledge is a cognitive representation of our experiences. But then, so is reality; it is a cognitive representation of our sensory inputs. It is a fallacy to think that knowledge is our internal representation of an external reality, and therefore distinct from it. Knowledge and reality are both internal cognitive constructs, although we have come to think of them as separate.

Recognizing and making use of the interconnections among the different domains of human endeavour may be the catalyst for the next breakthrough in our collective wisdom that we have been waiting for.

Uncertainly Principle

The uncertainty principle is the second thing in physics that has captured the public imagination. (The first one is E=mc^2.) It says something seemingly straightforwardyou can measure two complimentary properties of a system only to a certain precision. For instance, if you try to figure out where an electron is (measure its position, that is) more and more precisely, its speed becomes progressively more uncertain (or, the momentum measurement becomes imprecise).

Where does this principle come from? Before we can ask that question, we have to examine what the principle really says. Here are a few possible interpretations:

  1. Position and momentum of a particle are intrinsically interconnected. As we measure the momentum more accurately, the particle kind ofspreads out,” as George Gamow’s character, Mr. Tompkins, puts it. In other words, it is just one of those things; the way the world works.
  2. When we measure the position, we disturb the momentum. Our measurement probes aretoo fat,” as it were. As we increase the position accuracy (by shining light of shorter wavelengths, for instance), we disturb the momentum more and more (because shorter wavelength light has higher energy/momentum).
  3. Closely related to this interpretation is a view that the uncertainty principle is a perceptual limit.
  4. We can also think of the uncertainly principle as a cognitive limit if we consider that a future theory might surpass such limits.

All right, the last two interpretations are my own, so we won’t discuss them in detail here.

The first view is currently popular and is related to the so-called Copenhagen interpretation of quantum mechanics. It is kind of like the closed statements of Hinduism — “Such is the nature of the Absolute,” for instance. Accurate, may be. But of little practical use. Let’s ignore it for it is not too open to discussions.

The second interpretation is generally understood as an experimental difficulty. But if the notion of the experimental setup is expanded to include the inevitable human observer, we arrive at the third view of perceptual limitation. In this view, it is actually possible toderivethe uncertainty principle.

Let’s assume that we are using a beam of light of wavelength \lambda to observe the particle. The precision in the position we can hope to achieve is of the order of \lambda. In other words, \Delta x \approx \lambda. In quantum mechanics, the momentum of each photon in the light beam is inversely proportional to the wavelength. At least one photon is reflected by the particle so that we can see it. So, by the classical conservation law, the momentum of the particle has to change by at least \Delta p \approx constant\lambda from what it was before the measurement. Thus, through perceptual arguments, we get something similar to the Heisenberg uncertainty principle \Delta x \Delta p = constant.

We can make this argument more rigorous, and get an estimate of the value of the constant. The resolution of a microscope is given by the empirical formula 0.61\lambda/NA, where NA is the numerical aperture, which has a maximum value of one. Thus, the best spatial resolution is 0.61\lambda. Each photon in the light beam has a momentum 2\pi\hbar/\lambda, which is the uncertainty in the particle momentum. So we get \Delta x \Delta p = (0.61\lambda)(2\pi\hbar) \approx 4\hbar, approximately an order of magnitude bigger than the quantum mechanical limit. Through more rigorous statistical arguments, related to the spatial resolution and the expected momentum transferred, it may possible to derive the Heisenberg uncertainty principle through this line of reasoning.

If we consider the philosophical view that our reality is a cognitive model of our perceptual stimuli (which is the only view that makes sense to me), my fourth interpretation of the uncertainty principle being a cognitive limitation also holds a bit of water.

Reference

The latter part of this post is an excerpt from my book, The Unreal Universe.

God’s Blunder

Scriptures tell us, in different ways depending on our denomination and affiliation, that God created the world and everything in it, including us. This is creationism in a nutshell.

Standing in the other corner, all gloved up to knock the daylight out of creationism, is science. It tells us that we came out of complete lifelessness through successive mutations goaded by the need to survive. This is Evolution, a view so widely accepted that the use of capital E is almost justified.

All our experience and knowledge point to the rightness the Evolution idea. It doesn’t totally preclude the validity of God, but it does make it more likely that we humans created God. (It must be just us humans for we don’t see a cat saying Lord’s grace before devouring a mouse!) And, given the inconveniences caused by the God concept (wars, crusades, the dark ages, ethnic cleansing, religious riots, terrorism and so on), it certainly looks like a blunder.

No wonder Nietzsche said,

On the other hand, if God did create man, then all the stupid things that we dowars, crusades etc. plus this blogdo point to the fact that we are a blunder. We must be such a disappointment to our creator. Sorry Sir!

Photo by The Library of Congress

Zen and the Art of Motorcycle Maintenance

Once, I had some doubts about my sanity. After all, if you find yourself questioning the realness of reality, you have to wonderis it reality that is unreal, or your sanity?

When I shared my concerns with this philosophically inclined friend of mine, she reassured me, “Sanity is overrated.After reading Zen and the Art of Motorcycle Maintenance, I think she was right. Perhaps she didn’t go far enoughmay be insanity is way underrated.

Zen and the Art of Motorcycle Maintenance defines insanity as the process of stepping outside mythos; mythos being the sum total of our combined knowledge passed down over the generations, thecommonsensethat precedes logic. If reality is not commonsense, what is? And doubting the realness of reality, almost by definition, is stepping outside the bounds of mythos. So it fits; my concerns were indeed well-founded.

But a good fit is no guarantee of therightnessof a hypothesis, as Zen and the Art of Motorcycle Maintenance teaches us. Given enough time, we can always come up with a hypothesis that fits our observations. The process of hypothesizing from observations and experiences is like trying to guess the nature of an object from the shadow it projects. And a projection is precisely what our reality isa projection of unknown forms and processes into our sensory and cognitive space, into our mythos and logos. But here, I may be pushing my own agenda rather than the theme of the book. But it does fit, doesn’t it? That is why I found myself mutteringExactly!” over and over during my three reads of the book, and why I will read it many more times in the future. Let’s remind ourselves again, a good fit says nothing about the rightness of a hypothesis.

One such reasonable hypothesis of ours is about continuity We all assume the continuity of our personality or selfhood, which is a bit strange. I know that I am the same person I was twenty years ago — older certainly, wiser perhaps, but still the same person. But from science, I also know for a fact that every cell, every atom and every little fundamental particle in my body now is different from what constituted my body then. The potassium in the banana I ate two weeks ago is, for instance, what may be controlling the neuronal firing behind the thought process helping me write this essay. But it is still me, not the banana. We all assume this continuity because it fits.

Losing this continuity of personality is a scary thought. How scary it is is what Zen and the Art of Motorcycle Maintenance tells you. As usual, I’m getting a bit ahead of myself. Let’s start at the beginning.

In order to write a decent review of this book, it is necessary to summarize the “story” (which is believed to be based on the author’s life). Like most great works of literature, the story flows inwards and outwards. Outwardly, it is a story of a father and son (Pirsig and Chris) across the vast open spaces of America on a motorbike. Inwardly, it is a spiritual journey of self-discovery and surprising realizations. At an even deeper level, it is a journey towards possible enlightenment rediscovered.

The story begins with Pirsig and Chris riding with John and Sylvia. Right at the first unpretentious sentence, “I can see by my watch, without taking my hand from the left grip of the cycle, that it is eight-thirty in the morning,” it hit me that this was no ordinary book — the story is happening in the present tense. It is here and now — the underlying Zen-ness flows from the first short opening line and never stops.

The story slowly develops into the alienation between Chris and his father. The “father” comes across as a “selfish bastard,” as one of my friends observed.

The explanation for this disconnect between the father and the son soon follows. The narrator is not the father. He has the father’s body all right, but the real father had his personality erased through involuntary shock treatments. The doctor had reassured him that he had a new personality — not that he was a new personality.

The subtle difference makes ample sense once we realize that “he” and his “personality” are not two. And, to those of us how believe in the continuity of things like self-hood, it is a very scary statement. Personality is not something you have and wear, like a suit or a dress; it is what you are. If it can change, and you can get a new one, what does it say about what you think you are?

In Pirsig’s case, the annihilation of the old personality was not perfect. Besides, Chris was tagging along waiting for that personality to wake up. But awakening a personality is very different from waking a person up. It means waking up all the associated thoughts and ideas, insights and enlightenment. And wake up it does in this story — Phaedrus is back by the time we reach the last pages of the book.

What makes this book such a resounding success, (not merely in the market, but as an intellectual endeavor) are the notions and insights from Phaedrus that Pirsig manages to elicit. Zen and the Art of Motorcycle Maintenance is nothing short of a new way of looking at reality. It is a battle for the minds, yours and mine, and those yet to come.

Such a battle was waged and won ages ago, and the victors were not gracious and noble enough to let the defeated worldview survive. They used a deadly dialectical knife and sliced up our worldview into an unwieldy duality. The right schism, according to Phaedrus and/or Pirsig, would have been a trinity.

The trinity managed to survive, albeit feebly, as a vanquished hero, timid and self-effacing. We see it in the Bible, for instance, as the Father, the Son and the Holy Spirit. We see it Hinduism, as its three main gods, and in Vedanta, a line of thought I am more at home with, as Satyam, Shivam, Sundaram — the Truth, ???, the Beauty. The reason why I don’t know what exactly Shivam means indicates how the battle for the future minds was won by the dualists.

It matters little that the experts in Vedanta and the Indian philosophical schools may know precisely what Shivam signifies. I for one, and the countless millions like me, will never know it with the clarity with which we know the other two terms — Sundaram and Satyam, beauty and truth, Maya and Brahman, aesthetics and metaphysics, mind and matter. The dualists have so completely annihilated the third entity that it does not even make sense now to ask what it is. They have won.

Phaedrus did ask the question, and found the answer to be Quality — something that sits in between mind and matter, between a romantic and a classical understanding of the world. Something that we have to and do experience before our intellect has a chance to process and analyze it. Zen.

However, in doing so, Phaedrus steps outside our mythos, and is hence insane.

If insanity is Zen, then my old friend was right. Sanity is way overrated.

Photo by MonsieurLui

The Philosophy of Special Relativity — A Comparison between Indian and Western Interpretations

Abstract: The Western philosophical phenomenalism could be treated as a kind of philosophical basis of the special theory of relativity. The perceptual limitations of our senses hold the key to the understanding of relativistic postulates. The specialness of the speed of light in our phenomenal space and time is more a matter of our perceptual apparatus, than an input postulate to the special theory of relativity. The author believes that the parallels among the phenomenological, Western spiritual and the Eastern Advaita interpretations of special relativity point to an exciting possibility of unifying the Eastern and Western schools of thought to some extent.

– Editor

Key Words: Relativity, Speed of Light, Phenomenalism, Advaita.

Introduction

The philosophical basis of the special theory of relativity can be interpreted in terms of Western phenomenalism, which views space and time are considered perceptual and cognitive constructs created out our sensory inputs. From this perspective, the special status of light and its speed can be understood through a phenomenological study of our senses and the perceptual limitations to our phenomenal notions of space and time. A similar view is echoed in the BrahmanMaya distinction in Advaita. If we think of space and time as part of Maya, we can partly understand the importance that the speed of light in our reality, as enshrined in special relativity. The central role of light in our reality is highlighted in the Bible as well. These remarkable parallels among the phenomenological, Western spiritual and the Advaita interpretations of special relativity point to an exciting possibility of unifying the Eastern and Western schools of thought to a certain degree.

Special Relativity

Einstein unveiled his special theory of relativity2 a little over a century ago. In his theory, he showed that space and time were not absolute entities. They are entities relative to an observer. An observer’s space and time are related to those of another through the speed of light. For instance, nothing can travel faster than the speed of light. In a moving system, time flows slower and space contracts in accordance with equations involving the speed of light. Light, therefore, enjoys a special status in our space and time. This specialness of light in our reality is indelibly enshrined in the special theory of relativity.

Where does this specialness come from? What is so special about light that its speed should figure in the basic structure of space and time and our reality? This question has remained unanswered for over 100 years. It also brings in the metaphysical aspects of space and time, which form the basis of what we perceive as reality.

Noumenal-Phenomenal and BrahmanMaya Distinctions

In the Advaita3 view of reality, what we perceive is merely an illusion-Maya. Advaita explicitly renounces the notion that the perceived reality is external or indeed real. It teaches us that the phenomenal universe, our conscious awareness of it, and our bodily being are all an illusion or Maya. They are not the true, absolute reality. The absolute reality existing in itself, independent of us and our experiences, is Brahman.

A similar view of reality is echoed in phenomenalism,4 which holds that space and time are not objective realities. They are merely the medium of our perception. In this view, all the phenomena that happen in space and time are merely bundles of our perception. Space and time are also cognitive constructs arising from perception. Thus, the reasons behind all the physical properties that we ascribe to space and time have to be sought in the sensory processes that create our perception, whether we approach the issue from the Advaita or phenomenalism perspective.

This analysis of the importance of light in our reality naturally brings in the metaphysical aspects of space and time. In Kant’s view,5 space and time are pure forms of intuition. They do not arise from our experience because our experiences presuppose the existence of space and time. Thus, we can represent space and time in the absence of objects, but we cannot represent objects in the absence of space and time.

Kant’s middle-ground has the advantage of reconciling the views of Newton and Leibniz. It can agree with Newton’s view6 that space is absolute and real for phenomenal objects open to scientific investigation. It can also sit well with Leibniz’s view7 that space is not absolute and has an existence only in relation to objects, by highlighting their relational nature, not among objects in themselves (noumenal objects), but between observers and objects.

We can roughly equate the noumenal objects to forms in Brahman and our perception of them to Maya. In this article, we will use the terms “noumenal reality,” “absolute reality,” or “physical reality” interchangeably to describe the collection of noumenal objects, their properties and interactions, which are thought to be the underlying causes of our perception. Similarly, we will “phenomenal reality,” “perceived or sensed reality,” and “perceptual reality” to signify our reality as we perceive it.

As with Brahman causing Maya, we assume that the phenomenal notions of space and time arise from noumenal causes8 through our sensory and cognitive processes. Note that this causality assumption is ad-hoc; there is no a priori reason for phenomenal reality to have a cause, nor is causation a necessary feature of the noumenal reality. Despite this difficulty, we proceed from a naive model for the noumenal reality and show that, through the process of perception, we can “derive” a phenomenal reality that obeys the special theory of relativity.

This attempt to go from the phenomena (space and time) to the essence of what we experience (a model for noumenal reality) is roughly in line with Husserl’s transcendental phenomenology.9 The deviation is that we are more interested in the manifestations of the model in the phenomenal reality itself rather than the validity of the model for the essence. Through this study, we show that the specialness of the speed of light in our phenomenal space and time is a consequence of our perceptual apparatus. It doesn’t have to be an input postulate to the special theory of relativity.

Perception and Phenomenal Reality

The properties we ascribe to space and time (such as the specialness of the speed of light) can only be a part of our perceived reality or Maya, in Advaita, not of the underlying absolute reality, Brahman. If we think of space and time as aspects of our perceived reality arising from an unknowable Brahman through our sensory and cognitive processes, we can find an explanation for the special distinction of the speed of light in the process and mechanism of our sensing. Our thesis is that the reason for the specialness of light in our phenomenal notions of space and time is hidden in the process of our perception.

We, therefore, study how the noumenal objects around us generate our sensory signals, and how we construct our phenomenal reality out of these signals in our brains. The first part is already troublesome because noumenal objects, by definition, have no properties or interactions that we can study or understand.

These features of the noumenal reality are identical to the notion of Brahman in Advaita, which highlights that the ultimate truth is Brahman, the one beyond time, space and causation. Brahman is the material cause of the universe, but it transcends the cosmos. It transcends time; it exists in the past, present and future. It transcends space; it has no beginning, middle and end. It even transcends causality. For that reason, Brahman is incomprehensible to the human mind. The way it manifests to us is through our sensory and cognitive processes. This manifestation is Maya, the illusion, which, in the phenomenalistic parlance, corresponds to the phenomenal reality.

For our purpose in this article, we describe our sensory and cognitive process and the creation of the phenomenal reality or Maya10 as follows. It starts with the noumenal objects (or forms in Brahman), which generate the inputs to our senses. Our senses then process the signals and relay the processed electric data corresponding to them to our brain. The brain creates a cognitive model, a representation of the sensory inputs, and presents it to our conscious awareness as reality, which is our phenomenal world or Maya.

This description of how the phenomenal reality created ushers in a tricky philosophical question. Who or what creates the phenomenal reality and where? It is not created by our senses, brain and mind because these are all objects or forms in the phenomenal reality. The phenomenal reality cannot create itself. It cannot be that the noumenal reality creates the phenomenal reality because, in that case, it would be inaccurate to assert the cognitive inaccessibility to the noumenal world.

This philosophical trouble is identical in Advaita as well. Our senses, brain and mind cannot create Maya, because they are all part of Maya. If Brahman created Maya, it would have to be just as real. This philosophical quandary can be circumvented in the following way. We assume that all events and objects in Maya have a cause or form in Brahman or in the noumenal world. Thus, we postulate that our senses, mind and body all have some (unknown) forms in Brahman (or in the noumenal world), and these forms create Maya in our conscious awareness, ignoring the fact that our consciousness itself is an illusory manifestation in the phenomenal world. This inconsistency is not material to our exploration into the nature of space and time because we are seeking the reason for the specialness of light in the sensory process rather than at the level of consciousness.

Space and time together form what physics considers the basis of reality. Space makes up our visual reality precisely as sounds make up our auditory world. Just as sounds are a perceptual experience rather than a fundamental property of physical reality, space also is an experience, or a cognitive representation of the visual inputs, not a fundamental aspect of Brahman or the noumenal reality. The phenomenal reality thus created is Maya. The Maya events are an imperfect or distorted representation of the corresponding Brahman events. Since Brahman is a superset of Maya (or, equivalently, our senses are potentially incapable of sensing all aspects of the noumenal reality), not all objects and events in Brahman create a projection in Maya. Our perception (or Maya) is thus limited because of the sense modality and its speed, which form the focus of our investigation in this article.

In summary, it can be argued that the noumenal-phenomenal distinction in phenomenalism is an exact parallel to the BrahmanMaya distinction in Advaita if we think of our perceived reality (or Maya) as arising from sensory and cognitive processes.

Sensing Space and Time, and the Role of Light

The phenomenal notions of space and time together form what physics considers the basis of reality. Since we take the position that space and time are the end results of our sensory perception, we can understand some of the limitations in our Maya by studying the limitations in our senses themselves.

At a fundamental level, how do our senses work? Our sense of sight operates using light, and the fundamental interaction involved in sight falls in the electromagnetic (EM) category because light (or photon) is the intermediary of EM interactions.11

The exclusivity of EM interaction is not limited to our long-range sense of sight; all the short-range senses (touch, taste, smell and hearing) are also EM in nature. In physics, the fundamental interactions are modeled as fields with gauge bosons.12 In quantum electrodynamics13 (the quantum field theory of EM interactions), photon (or light) is the gauge boson mediating EM interactions. Electromagnetic interactions are responsible for all our sensory inputs. To understand the limitations of our perception of space, we need not highlight the EM nature of all our senses. Space is, by and large, the result of our sight sense. But it is worthwhile to keep in mind that we would have no sensing, and indeed no reality, in the absence of EM interactions.

Like our senses, all our technological extensions to our senses (such as radio telescopes, electron microscopes, red shift measurements and even gravitational lensing) use EM interactions exclusively to measure our universe. Thus, we cannot escape the basic constraints of our perception even when we use modern instruments. The Hubble telescope may see a billion light years farther than our naked eyes, but what it sees is still a billion years older than what our eyes see. Our phenomenal reality, whether built upon direct sensory inputs or technologically enhanced, is made up of a subset of EM particles and interactions only. What we perceive as reality is a subset of forms and events in the noumenal world corresponding to EM interactions, filtered through our sensory and cognitive processes. In the Advaita parlance, Maya can be thought of as a projection of Brahman through EM interactions into our sensory and cognitive space, quite probably an imperfect projection.

The exclusivity of EM interactions in our perceived reality is not always appreciated, mainly because of a misconception that we can sense gravity directly. This confusion arises because our bodies are subject to gravity. There is a fine distinction between “being subject to” and “being able to sense” gravitational force. The gravity sensing in our ears measures the effect of gravity on EM matter. In the absence of EM interaction, it is impossible to sense gravity, or anything else for that matter.

This assertion that there is no sensing in the absence of EM interactions brings us to the next philosophical hurdle. One can always argue that, in the absence of EM interaction, there is no matter to sense. This argument is tantamount to insisting that the noumenal world consists of only those forms and events that give rise to EM interaction in our phenomenal perception. In other words, it is the same as insisting that Brahman is made up of only EM interactions. What is lacking in the absence of EM interaction is only our phenomenal reality. In the Advaita notion, in the absence of sensing, Maya does not exist. The absolute reality or Brahman, however, is independent of our sensing it. Again, we see that the Eastern and Western views on reality we explored in this article are remarkably similar.

The Speed of Light

Knowing that our space-time is a representation of the light waves our eyes receive, we can immediately see that light is indeed special in our reality. In our view, sensory perception leads to our brain’s representation that we call reality, or Maya. Any limitation in this chain of sensing leads to a corresponding limitation in our phenomenal reality.

One limitation in the chain from senses to perception is the finite speed of photon, which is the gauge boson of our senses. The finite speed of the sense modality influences and distorts our perception of motion, space and time. Because these distortions are perceived as a part of our reality itself, the root cause of the distortion becomes a fundamental property of our reality. This is how the speed of light becomes such an important constant in our space-time.

The importance of the speed of light, however, is respected only in our phenomenal Maya. Other modes of perception have other speeds the figure as the fundamental constant in their space-like perception. The reality sensed through echolocation, for instance, has the speed of sound as a fundamental property. In fact, it is fairly simple to establish14 that echolocation results in a perception of motion that obeys something very similar to special relativity with the speed of light replaced with that of sound.

Theories beyond Sensory Limits

The basis of physics is the world view called scientific realism, which is not only at the core of sciences but is our natural way of looking at the world as well. Scientific realism, and hence physics, assume an independently existing external world, whose structures are knowable through scientific investigations. To the extent observations are based on perception, the philosophical stance of scientific realism, as it is practiced today, can be thought of as a trust in our perceived reality, and as an assumption that it is this reality that needs to be explored in science.

Physics extends its reach beyond perception or Maya through the rational element of pure theory. Most of physics works in this “extended” intellectual reality, with concepts such as fields, forces, light rays, atoms, particles, etc., the existence of which is insisted upon through the metaphysical commitment implied in scientific realism. However, it does not claim that the rational extensions are the noumenal causes or Brahman giving raise to our phenomenal perception.

Scientific realism has helped physics tremendously, with all its classical theories. However, scientific realism and the trust in our perception of reality should apply only within the useful ranges of our senses. Within the ranges of our sensory perceptions, we have fairly intuitive physics. An example of an intuitive picture is Newtonian mechanics that describe “normal” objects moving around at “normal” speeds.

When we get closer to the edges of our sensory modalities, we have to modify our sciences to describe the reality as we sense it. These modifications lead to different, and possibly incompatible, theories. When we ascribe the natural limitations of our senses and the consequent limitations of our perception (and therefore observations) to the fundamental nature of reality itself, we end up introducing complications in our physical laws. Depending on which limitations we are incorporating into the theory (e.g., small size, large speeds etc.), we may end up with theories that are incompatible with each other.

Our argument is that some of these complications (and, hopefully, incompatibilities) can be avoided if we address the sensory limitations directly. For instance, we can study the consequence of the fact that our senses operate at the speed of light as follows. We can model Brahman (the noumenal reality) as obeying classical mechanics, and work out what kind of Maya (phenomenal reality) we will experience through the chain of sensing.

The modeling of the noumenal world (as obeying classical mechanics), of course, has shaky philosophical foundations. But the phenomenal reality predicted from this model is remarkably close to the reality we do perceive. Starting from this simple model, it can be easily shown our perception of motion at high speeds obeys special relativity.

The effects due to the finite speed of light are well known in physics. We know, for instance, that what we see happening in distant stars and galaxies now actually took place quite awhile ago. A more “advanced” effect due to the light travel time15 is the way we perceive motion at high speeds, which is the basis of special relativity. In fact, many astrophysical phenomena can be understood16 in terms of light travel time effects. Because our sense modality is based on light, our sensed picture of motion has the speed of light appearing naturally in the equations describing it. So the importance of the speed of light in our space-time (as described in special relativity) is due to the fact that our reality is Maya created based on light inputs.

Conclusion

Almost all branches of philosophy grapple with this distinction between the phenomenal and the absolute realities to some extent. Advaita Vedanta holds the unrealness of the phenomenal reality as the basis of their world view. In this article, we showed that the views in phenomenalism can be thought of as a restatement of the Advaita postulates.

When such a spiritual or philosophical insight makes its way into science, great advances in our understanding can be expected. This convergence of philosophy (or even spirituality) and science is beginning to take place, most notably in neuroscience, which views reality as a creation of our brain, echoing the notion of Maya.

Science gives a false impression that we can get arbitrarily close to the underlying physical causes through the process of scientific investigation and rational theorization. An example of such theorization can be found in our sensation of hearing. The experience or the sensation of sound is an incredibly distant representation of the physical cause–namely air pressure waves. We are aware of the physical cause because we have a more powerful sight sense. So it would seem that we can indeed go from Maya (sound) to the underlying causes (air pressure waves).

However, it is a fallacy to assume that the physical cause (the air pressure waves) is Brahman. Air pressure waves are still a part of our perception; they are part of the intellectual picture we have come to accept. This intellectual picture is an extension of our visual reality, based on our trust in the visual reality. It is still a part of Maya.

The new extension of reality proposed in this article, again an intellectual extension, is an educated guess. We guess a model for the absolute reality, or Brahman, and predict what the consequent perceived reality should be, working forward through the chain of sensing and creating Maya. If the predicted perception is a good match with the Maya we do experience, then the guesswork for Brahman is taken to be a fairly accurate working model. The consistency between the predicted perception and what we do perceive is the only validation of the model for the nature of the absolute reality. Furthermore, the guess is only one plausible model for the absolute reality; there may be different such “solutions” to the absolute reality all of which end up giving us our perceived reality.

It is a mistake to think of the qualities of our subjective experience of sound as the properties of the underlying physical process. In an exact parallel, it is a fallacy to assume that the subjective experience of space and time is the fundamental property of the world we live in. The space-time continuum, as we see it or feel it, is only a partial and incomplete representation of the unknowable Brahman. If we are willing to model the unknowable Brahman as obeying classical mechanics, we can indeed derive the properties of our perceived reality (such as time dilation, length contraction, light speed ceiling and so on in special relativity). By proposing this model for the noumenal world, we are not suggesting that all the effects of special relativity are mere perceptual artifacts. We are merely reiterating a known fact that space and time themselves cannot be anything but perceptual constructs. Thus their properties are manifestations of the process of perception.

When we consider processes close to or beyond our sensor limits, the manifestations of our perceptual and cognitive constraints become significant. Therefore, when it comes to the physics that describes such processes, we really have to take into account the role that our perception and cognition play in sensing them. The universe as we see it is only a cognitive model created out of the photons falling on our retina or on the photosensors of the Hubble telescope. Because of the finite speed of the information carrier (namely light), our perception is distorted in such a way as to give us the impression that space and time obey special relativity. They do, but space and time are only a part of our perception of an unknowable reality—a perception limited by the speed of light.

The central role of light in creating our reality or universe is at the heart of western spiritual philosophy as well. A universe devoid of light is not simply a world where you have switched off the lights. It is indeed a universe devoid of itself, a universe that doesn’t exist. It is in this context that we have to understand the wisdom behind the notion that “the earth was without form, and void'” until God caused light to be, by saying “Let there be light.” Quran also says, “Allah is the light of the heavens.” The role of light in taking us from the void (the nothingness) to a reality was understood for a long, long time. Is it possible that the ancient saints and prophets knew things that we are only now beginning to uncover with all our advances in knowledge? Whether we use old Eastern Advaita views or their Western counterparts, we can interpret the philosophical stance behind special relativity as hidden in the distinction between our phenomenal reality and its unknowable physical causes.

References

  1. Dr. Manoj Thulasidas graduated from the Indian Institute of Technology (IIT), Madras, in 1987. He studied fundamental particles and interactions at the CLEO collaboration at Cornell University during 1990-1992. After receiving his PhD in 1993, he moved to Marseilles, France and continued his research with the ALEPH collaboration at CERN, Geneva. During his ten-year career as a research scientist in the field of High energy physics, he co-authored over 200 publications.
  2. Einstein, A. (1905). Zur Elektrodynamik bewegter Körper. (On The Electrodynamics Of Moving Bodies). Annalen der Physik, 17, 891-921.
  3. Radhakrishnan, S. & Moore, C. A. (1957). Source Book in Indian Philosophy. Princeton University Press, Princeton, NY.
  4. Chisolm, R. (1948). The Problem of Empiricism. The Journal of Philosophy, 45, 512-517.
  5. Allison, H. (2004). Kant’s Transcendental Idealism. Yale University Press.
  6. Rynasiewicz, R. (1995). By Their Properties, Causes and Effects: Newton’s Scholium on Time, Space, Place and Motion. Studies in History and Philosophy of Science, 26, 133-153, 295-321.
  7. Calkins, M. W. (1897). Kant’s Conception of the Leibniz Space and Time Doctrine. The Philosophical Review, 6 (4), 356-369.
  8. Janaway, C., ed. (1999). The Cambridge Companion to Schopenhauer. Cambridge University Press.
  9. Schmitt, R. (1959). Husserl’s Transcendental-Phenomenological Reduction. Philosophy and Phenomenological Research, 20 (2), 238-245.
  10. Thulasidas, M. (2007). The Unreal Universe. Asian Books, Singapore.
  11. Electromagnetic (EM) interaction is one of the four kinds of interactions in the Standard Model (Griffths, 1987) of particle physics. It is the interaction between charged bodies. Despite the EM repulsion between them, however, the protons stay confined within the nucleus because of the strong interaction, whose magnitude is much bigger than that of EM interactions. The other two interactions are termed the weak interaction and the gravitational interaction.
  12. In quantum field theory, every fundamental interaction consists of emitting a particle and absorbing it in an instant. These so-called virtual particles emitted and absorbed are known as the gauge bosons that mediate the interactions.
  13. Feynman, R. (1985). Quantum Electrodynamics. Addison Wesley.
  14. Thulasidas, M. (2007). The Unreal Universe. Asian Books, Singapore.
  15. Rees, M. (1966). Appearance of Relativistically Expanding Radio Sources. Nature, 211, 468-470.
  16. Thulasidas, M. (2007a). Are Radio Sources and Gamma Ray Bursts Luminal Booms? International Journal of Modern Physics D, 16 (6), 983-1000.

Einstein on God and Dice

Although Einstein is best known for his theories of relativity, he was also the main driving force behind the advent of quantum mechanics (QM). His early work in photo-voltaic effect paved way for future developments in QM. And he won the Nobel prize, not for the theories of relativity, but for this early work.

It then should come as a surprise to us that Einstein didn’t quite believe in QM. He spent the latter part of his career trying to device thought experiments that would prove that QM is inconsistent with what he believed to be the laws of nature. Why is it that Einstein could not accept QM? We will never know for sure, and my guess is probably as good as anybody else’s.

Einstein’s trouble with QM is summarized in this famous quote.

It is indeed difficult to reconcile the notions (or at least some interpretations) of QM with a word view in which a God has control over everything. In QM, observations are probabilistic in nature. That is to say, if we somehow manage to send two electrons (in the same state) down the same beam and observe them after a while, we may get two different observed properties.

We can interpret this imperfection in observation as our inability to set up identical initial states, or the lack of precision in our measurements. This interpretation gives rise to the so-called hidden variable theories — considered invalid for a variety of reasons. The interpretation currently popular is that uncertainty is an inherent property of nature — the so-called Copenhagen interpretation.

In the Copenhagen picture, particles have positions only when observed. At other times, they should be thought of as kind of spread out in space. In a double-slit interference experiment using electrons, for instance, we should not ask whether a particular electron takes on slit or the other. As long as there is interference, it kind of takes both.

The troubling thing for Einstein in this interpretation would be that even God would not be able to make the electron take one slit or the other (without disturbing the interference pattern, that is). And if God cannot place one tiny electron where He wants, how is he going to control the whole universe?

La logique

[The last of my French redactions to be blogged, this one wasn’t such a hit with the class. They expected a joke, but what they got was, well, this. It was written the day after I watched an air show on TV where the French were proudly showcasing their fighter technology.]

[In English first]

Science is based on logic. And logic is based on our experiences — what we learn during our life. But, because our experiences are incomplete, our logic can be wrong. And our science can lead us to our demise. When I watched the fighter planes on TV, I started thinking about the energy and effort we spend on trying to kill ourselves. It seems to me that our logic here had to be wrong.

A few months ago, I read a short story (by O.V. Vijayan, as a matter of fact) about a chicken who found itself in a cage. Everyday, by noon, the little window of the cage would open, a man’s hand would appear and give the chicken something to eat. It went on for 99 days. And the chicken concluded:

“Noon, hand, food — good!”

On the hundredth day, by noon, the hand appeared again. The chicken, all happy and full of gratitude, waited for something to eat. But this time, the hand caught it by the neck and strangled it. Because of realities beyond its experience, the chicken became dinner on that day. I hope we human beings can avoid such eventualities.

Les sciences sont basées sur la logique. Et la logique se base sur les expériences – ce que nous apprenons dans notre vie. Mais, comme nos expériences ne sont pas toujours completes, notre logique peut avoir tort. Et nos sciences peuvent nous diriger vers notre destruction. Lorsque je regardais les avions de combat à la télé, ils m’ont fait penser à l’énergie et aux efforts que nous gaspillons en essayant de nous tuer. Il me paraît que la
logique ici doit avoir tort.

J’ai lu une petite histoire d’une poule il y a quelques mois. Elle s’est trouvée dans une cage, un homme l’y avait mise. Chaque jour, vers midi, la petite fenêtre de la cage s’ouvrait, une main se montrait avec de quoi manger pour la poule. Ça s’est passé comme ça pendant quatre-vingt-dix-neuf jours. Et la poule a pensé:

“Aha, midi, main, manger – bien!”

Le centième jour est arrivé. Le midi, la main s’est montrée. La poule, toute heureuse et pleine de gratitude, attendait de quoi manger. Mais, cette fois, la main l’a prise par le cou et l’a étranglée. A cause des réalités au-delà de ses expériences, la poule est devenue le diner ce jour-là. J’espère que nous pourrons éviter les éventualités de cette sorte.

1984

All great books have one thing in common. They present deep philosophical inquiries, often clad in superb story lines. Or is it just my proclivity to see philosophy where none exists?

In 1984, the immediate story is of a completely totalitarian regime. Inwardly, 1984 is also about ethics and politics. It doesn’t end there, but goes into nested philosophical inquiries about how everything is eventually connected to metaphysics. It naturally ends up in solipsism, not merely in the material, metaphysical sense, but also in a spiritual, socio-psychological sense where the only hope, the only desired outcome of life, becomes death.

I think I may be giving away too much of my impressions in the first paragraph. Let’s take it step by step. We all know that totalitarianism is bad. It is a bad political system, we believe. The badness of totalitarianism can present itself at different levels of our social existence.

At the lowest level, it can be a control over our physical movements, physical freedom, and restrictions on what you can or cannot do. Try voting against a certain African “president” and you get beaten up, for instance. Try leaving certain countries, you get shot.

At a higher level, totalitarianism can be about financial freedom. Think of those in the developed world who have to juggle three jobs just to put food on the table. At a progressively subtler level, totalitarianism is about control of information. Example: media conglomerates filtering and coloring all the news and information we receive.

At the highest level, totalitarianism is a fight for your mind, your soul, and your spiritual existence. 1984 presents a dystopia where totalitarianism is complete, irrevocable, and existing at all levels from physical to spiritual.

Another book of the same dystopian kind is The Handmaid’s Tale, where a feminist’s nightmare of a world is portrayed. Here, the focus is on religious extremism, and the social and sexual subjugation brought about by it. But the portrayal of the world gone hopelessly totalitarian is similar to 1984.

Also portraying a dark dystopia is V for Vendentta, with torture and terrorism thrown in. This work is probably inspired by 1984, I have to look it up.

It is the philosophical points in 1984 that make it the classic it is. The past, for instance, is a matter of convention. If everybody believes (or is forced to believe) that events took place in a certain way, then that is the past. History is written by the victors. Knowing that, how can you trust the greatness of the victors or the evil in the vanquished? Assume for a second that Hitler had actually won the Second World War. Do you think we would’ve still thought of him as evil? I think we would probably think of him as the father of the modern world or something. Of course, we would be having this conversation (if we were allowed to exist and have conversations at all) in German.

Even at a personal level, the past is not as immutable as it seems. Truth is relative. Lies repeated often enough become truth. All these points are describe well in 1984, first from Winston’s point of view and later, in the philosophically sophisticated discourses of O’Brien. In a world existing in our own brain, where the phenomenal reality as we see it is far from the physical one, morality does lose a bit of its glamor. Metaphysics can erode on ethics. Solipsism can annihilate it.

A review, especially one in a blog, doesn’t have to be conventional. So let me boldly outline my criticisms of 1984 as well. I believe that the greatest fear of a normal human being is the fear of death. After all, the purpose of life is merely to live a little longer. Everything that our biological faculties do stem from the desire to exist a little longer.

Based on this belief of mine, I find certain events in 1984 a bit incongruous. Why is it that Winston and Julia don’t fear death, but still fear the telescreens and gestapo-like police? Perhaps the fear of pain overrides the fear of death. What do I know, I have never been tortured.

But even the fear of pain can be understood in terms of the ultimate fear. Pain is a messenger of bodily harm, ergo of possible death. But fear of rats?! Perhaps irrational phobias, existing at a sub-cognitive, almost physical, layer may be stronger than everything else. But I cannot help feeling that there is something amiss, something contrived, in the incarceration and torture parts of 1984.

May be Orwell didn’t know how to portray spiritual persecution. Luckily, none of us knows. So such techniques as rats and betrayal were employed to bring about the hideousness of the process. This part of the book leaves me a bit dissatisfied. After all, our protagonists knew full well what they were getting into, and what the final outcome would be. If they knew their spirit would be broken, then why leave it out there to be broken?

Perception, Physics and the Role of Light in Philosophy

Reality, as we sense it, is not quite real. The stars we see in the night sky, for instance, are not really there. They may have moved or even died by the time we get to see them. This unreality is due to the time it takes for light from the distant stars and galaxies to reach us. We know of this delay.

Even the sun that we know so well is already eight minutes old by the time we see it. This fact does not seem to present particularly grave epistemological problems – if we want to know what is going on at the sun now, all we have to do is to wait for eight minutes. We only have to ‘correct’ for the distortions in our perception due to the finite speed of light before we can trust what we see. The same phenomenon in seeing has a lesser-known manifestation in the way we perceive moving objects. Some heavenly bodies appear as though they are moving several times the speed of light, whereas their ‘real’ speed must be a lot less than that.

What is surprising (and seldom highlighted) is that when it comes to sensing motion, we cannot back-calculate in the same kind of way as we can to correct for the delay in observation of the sun. If we see a celestial body moving at an improbably high speed, we cannot calculate how fast or even in what direction it is ‘really’ moving without first having to make certain further assumptions.

Einstein chose to resolve the problem by treating perception as distorted and inventing new fundamental properties in the arena of physics – in the description of space and time. One core idea of the Special Theory of Relativity is that the human notion of an orderly sequence of events in time needs to be abandoned. In fact, since it takes time for light from an event at a distant place to reach us, and for us to become aware of it, the concept of ‘now’ no longer makes any sense, for example, when we speak of a sunspot appearing on the surface of the sun just at the moment that the astronomer was trying to photograph it. Simultaneity is relative.

Einstein instead redefined simultaneity by using the instants in time we detect the event. Detection, as he defined it, involves a round-trip travel of light similar to radar detection. We send out a signal travelling at the speed of light, and wait for the reflection. If the reflected pulse from two events reaches us at the same instant, then they are simultaneous. But another way of looking at it is simply to call two events ‘simultaneous’ if the light from them reaches us at the same instant. In other words, we can use the light generated by the objects under observation rather than sending signals to them and looking at the reflection.

This difference may sound like a hair-splitting technicality, but it does make an enormous difference to the predictions we can make. Einstein’s choice results in a mathematical picture that has many desirable properties, including that of making further theoretical development more elegant. But then, Einstein believed, as a matter of faith it would seem, that the rules governing the universe must be ‘elegant.’ However, the other approach has an advantage when it comes to describing objects in motion. Because, of course, we don’t use radar to see the stars in motion; we merely sense the light (or other radiation) coming from them. Yet using this kind of sensory paradigm, rather than ‘radar-like detection,’ to describe the universe results in an uglier mathematical picture. Einstein would not approve!

The mathematical difference spawns different philosophical stances, which in turn percolate to the understanding of our physical picture of reality. As an illustration, suppose we observe, through a radio telescope, two objects in the sky, with roughly the same shape, size and properties. The only thing we know for sure is that the radio waves from these two different points in the sky reach us at the same instant in time. We can only guess when the waves started their journeys.

If we assume (as we routinely do) that the waves started the journey roughly at the same instant in time, we end up with a picture of two ‘real’ symmetric lobes more or less the way see them. But there is another, different possibility and that is that the waves originated from the same object (which is in motion) at two different instants in time, reaching the telescope at the same instant. This possibility would additionally explain some spectral and temporal properties of such symmetric radio sources. So which of these two pictures should we take as real? Two symmetric objects as we see them or one object moving in such a way as to give us that impression? Does it really matter which one is ‘real’? Does ‘real’ mean anything in this context?

Special Relativity gives an unambiguous answer to this question. The mathematics rules out the possibility of a single object moving in such a fashion as to mimic two objects. Essentially, what we see is what is out there. Yet, if we define events by what we perceive, the only philosophical stance that makes sense is the one that disconnects the sensed reality from the causes lying behind what is being sensed.

This disconnect is not uncommon in philosophical schools of thought. Phenomenalism, for instance, holds the view that space and time are not objective realities. They are merely the medium of our perception. All the phenomena that happen in space and time are merely bundles of our perception. In other words, space and time are cognitive constructs arising from perception. Thus, all the physical properties that we ascribe to space and time can only apply to the phenomenal reality (the reality of ‘things-in-the-world’ as we sense it. The underlying reality (which holds the physical causes of our perception), by contrast, remains beyond our cognitive reach.

Yet there is a chasm between the views of philosophy and modern physics. Not for nothing did the Nobel Prize winning physicist, Steven Weinberg, wonder, in his book Dreams of a Final Theory, why the contribution from philosophy to physics had been so surprisingly small. Perhaps it is because physics has yet to come to terms with the fact that when it comes to seeing the universe, there is no such thing as an optical illusion – which is probably what Goethe meant when he said, ‘Optical illusion is optical truth.’

The distinction (or lack thereof) between optical illusion and truth is one of the oldest debates in philosophy. After all, it is about the distinction between knowledge and reality. Knowledge is considered our view about something that, in reality, is ‘actually the case.’ In other words, knowledge is a reflection, or a mental image of something external, as shown in the figure below.

ExternalToBrain

In this picture, the black arrow represents the process of creating knowledge, which includes perception, cognitive activities, and the exercise of pure reason. This is the picture that physics has come to accept. While acknowledging that our perception may be imperfect, physics assumes that we can get closer and closer to the external reality through increasingly finer experimentation, and, more importantly, through better theorization. The Special and General Theories of Relativity are examples of brilliant applications of this view of reality where simple physical principles are relentlessly pursued using formidable machine of pure reason to their logically inevitable conclusions.

But there is another, alternative view of knowledge and reality that has been around for a long time. This is the view that regards perceived reality as an internal cognitive representation of our sensory inputs, as illustrated below.

AbsolutelToBrain

In this view, knowledge and perceived reality are both internal cognitive constructs, although we have come to think of them as separate. What is external is not the reality as we perceive it, but an unknowable entity giving rise to the physical causes behind sensory inputs. In the illustration, the first arrow represents the process of sensing, and the second arrow represents the cognitive and logical reasoning steps. In order to apply this view of reality and knowledge, we have to guess the nature of the absolute reality, unknowable as it is. One possible candidate for the absolute reality is Newtonian mechanics, which gives a reasonable prediction for our perceived reality.

To summarize, when we try to handle the distortions due to perception, we have two options, or two possible philosophical stances. One is to accept the distortions as part of our space and time, as Special Relativity does. The other option is to assume that there is a ‘higher’ reality distinct from our sensed reality, whose properties we can only conjecture. In other words, one option is to live with the distortion, while the other is to propose educated guesses for the higher reality. Neither of these choices is particularly attractive. But the guessing path is similar to the view accepted in phenomenalism. It also leads naturally to how reality is viewed in cognitive neuroscience, which studies the biological mechanisms behind cognition.

The twist to this story of light and reality is that we seem to have known all this for a long time. The role of light in creating our reality or universe is at the heart of Western religious thinking. A universe devoid of light is not simply a world where you have switched off the lights. It is indeed a universe devoid of itself, a universe that doesn’t exist. It is in this context that we have to understand the wisdom behind the statement that ‘the earth was without form, and void’ until God caused light to be, by saying ‘Let there be light.’

The Koran also says, ‘Allah is the light of the heavens and the earth,’ which is mirrored in one of the ancient Hindu writings: ‘Lead me from darkness to light, lead me from the unreal to the real.’ The role of light in taking us from the unreal void (the nothingness) to a reality was indeed understood for a long, long time. Is it possible that the ancient saints and prophets knew things that we are only now beginning to uncover with all our supposed advances in knowledge?

There are parallels between the noumenal-phenomenal distinction of Kant and the phenomenalists later, and the Brahman-Maya distinction in Advaita. Wisdom on the nature of reality from the repertoire of spirituality is reinvented in modern neuroscience, which treats reality as a cognitive representation created by the brain. The brain uses the sensory inputs, memory, consciousness, and even language as ingredients in concocting our sense of reality. This view of reality, however, is something physics is still unable to come to terms with. But to the extent that its arena (space and time) is a part of reality, physics is not immune to philosophy.

In fact, as we push the boundaries of our knowledge further and further, we are discovering hitherto unsuspected and often surprising interconnections between different branches of human efforts. Yet, how can the diverse domains of our knowledge be independent of each other if all knowledge is subjective? If knowledge is merely the cognitive representation of our experiences? But then, it is the modern fallacy to think that knowledge is our internal representation of an external reality, and therefore distinct from it. Instead, recognising and making use of the interconnections among the different domains of human endeavour may be the essential prerequisite for the next stage in developing our collective wisdom.

Box: Einstein’s TrainOne of Einstein’s famous thought experiments illustrates the need to rethink what we mean by simultaneous events. It describes a high-speed train rushing along a straight track past a small station as a man stands on the station platform watching it speed by. To his amazement, as the train passes him, two lightening bolts strike the track next to either end of the train! (Conveniently, for later investigators, they leave burn marks both on the train and on the ground.)

To the man, it seems that the two lightening bolts strike at exactly the same moment. Later, the marks on the ground by the train track reveal that the spots where the lightening struck were exactly equidistant from him. Since then the lightening bolts travelled the same distance towards him, and since they appeared to the man to happen at exactly the same moment, he has no reason not to conclude that the lightening bolts struck at exactly the same moment. They were simultaneous.

However, suppose a little later, the man meets a lady passenger who happened to be sitting in the buffet car, exactly at the centre of the train, and looking out of the window at the time the lightening bolts struck. This passenger tells him that she saw the first lightening bolt hit the ground near the engine at the front of the train slightly ahead of when the second one hit the ground next to the luggage car at the rear of the train.

The effect has nothing to do with the distance the light had to travel, as both the woman and the man were equidistant between the two points that the lightening hit. Yet they observed the sequence of events quite differently.

This disagreement of the timing of the events is inevitable, Einstein says, as the woman is in effect moving towards the point where the flash of lightening hit near the engine -and away from the point where the flash of lightening hit next to the luggage car. In the tiny amount of time it takes for the light rays to reach the lady, because the train moves, the distance the first flash must travel to her shrinks, and the distance the second flash must travel grows.

This fact may not be noticed in the case of trains and aeroplanes, but when it comes to cosmological distances, simultaneity really doesn’t make any sense. For instance, the explosion of two distant supernovae, seen as simultaneous from our vantage point on the earth, will appear to occur in different time combinations from other perspectives.

In Relativity: The Special and General Theory (1920), Einstein put it this way:

‘Every reference-body (co-ordinate system) has its own particular time; unless we are told the reference-body to which the statement of time refers, there is no meaning in a statement of the time of an event.’

Unreal Time

Farsight wrote:Time is a velocity-dependent subjective measure of event succession rather than something fundamental – the events mark the time, the time doesn’t mark the events. This means the stuff out there is space rather than space-time, and is an “aether” veiled by subjective time.

I like your definition of time. It is close to my own view that time is “unreal.” It is possible to treat space as real and space-time as something different, as you do. This calls for some careful thought. I will outline my thinking in this post and illustrate it with an example, if my friends don’t pull me out for lunch before I can finish. :)

The first question we need to ask ourselves is why space and time seem coupled? The answer is actually too simple to spot, and it is in your definition of time. Space and time mix through our concept of velocity and our brain’s ability to sense motion. There is an even deeper connection, which is that space is a cognitive representation of the photons inputs to our eyes, but we will get to it later.

Let’s assume for a second that we had a sixth sense that operated at an infinite speed. That is, if star explodes at a million light years from us, we can sense it immediately. We will see it only after a million years, but we sense it instantly. I know, it is a violation of SR, cannot happen and all that, but stay with me for a second. Now, a little bit of thinking will convince you that the space that we sense using this hypothetical sixth sense is Newtonian. Here, space and time can be completely decoupled, absolute time can be defined etc. Starting from this space, we can actually work out how we will see it using light and our eyes, knowing that the speed of light is what it is. It will turn out, clearly, that we seen events with a delay. That is a first order (or static) effect. The second order effect is the way we perceive objects in motion. It turns out that we will see a time dilation and a length contraction (for objects receding from us.)

Let me illustrate it a little further using echolocation. Assume that you are a blind bat. You sense your space using sonar pings. Can you sense a supersonic object? If it is coming towards you, by the time the reflected ping reaches you, it has gone past you. If it is going away from you, your pings can never catch up. In other words, faster than sound travel is “forbidden.” If you make one more assumption – the speed of the pings is the same for all bats regardless of their state of motion – you derive a special relativity for bats where the speed of sound is the fundamental property of space and time!

We have to dig a little deeper and appreciate that space is no more real than time. Space is a cognitive construct created out of our sensory inputs. If the sense modality (light for us, sound for bats) has a finite speed, that speed will become a fundamental property of the resultant space. And space and time will be coupled through the speed of the sense modality.

This, of course, is only my own humble interpretation of SR. I wanted to post this on a new thread, but I get the feeling that people are a little too attached to their own views in this forum to be able to listen.

Leo wrote:Minkowski spacetime is one interpretation of the Lorentz transforms, but other interpretations, the original Lorentz-Poincaré Relativity or modernized versions of it with a wave model of matter (LaFreniere or Close or many others), work in a perfectly euclidean 3D space.

So we end up with process slowdown and matter contraction, but NO time dilation or space contraction. The transforms are the same though. So why does one interpretation lead to tensor metric while the others don’t? Or do they all? I lack the theoretical background to answer the question.

Hi Leo,

If you define LT as a velocity dependent deformation of an object in motion, then you can make the transformation a function of time. There won’t be any warping and complications of metric tensors and stuff. Actually what I did in my book is something along those lines (though not quite), as you know.

The trouble arises when the transformation matrix is a function of the vector is transforming. So, if you define LT as a matrix operation in a 4-D space-time, you can no longer make it a function of time through acceleration any more than you can make it a function of position (as in a velocity field, for instance.) The space-time warping is a mathematical necessity. Because of it, you lose coordinates, and the tools that we learn in our undergraduate years are no longer powerful enough to handle the problem.