Category Archives: Physics

Physics was my first love. This category contains the posts closest to my heart. Twenty years from now, if this blog survives, this category will probably hold my most enduring insights. And two hundred years from now, if I am remembered at all, it will be for these insights; not for the kind of person I am, the money I make, nor anything else. Only for my first and last love…

The Physics of Romance

Let me give you a physics lesson. During your high school days, you may have learned that an atom has a nucleus and a bunch of electrons. The nucleus has protons and neutrons, which are like the basic building blocks of matter along with the electrons, they told you. Well, they lied to you. Neutrons and protons are not basic; they have smaller building blocks within, called quarks, which have some electric charge. More importantly, they have another kind of charge, which physicists call color, for no particular reason.

These color charges have a weird property. As you pull them apart, the attraction between them increases, which is totally unlike electric charges. So, if you try to pull two quarks apart beyond a very small distance, you have to put in so much energy that you start creating new pairs of quarks (a quantum weirdness, which we will ignore for now). You will never see a naked single quark. You will never see its true color. This quirk of quarks has a fancy name: Quark or Color Confinement. On the other hand, when quarks get closer together, they have little effect on each other. This also has a fancy name – Asymptotic Freedom.

Neutrons and protons have three quarks each, which roam free within a tiny space, giving the impression of them (neutrons and protons) being fundamental particles, within the confines of which they (the quarks) act totally cool, and don’t even feel the presence of one another.  The moment you try to pry one out though, the system of three quarks resists fiercely. If you insist and try harder, you do pry something out. You never get one quark though, but a pair which soon becomes a big ugly mess. And, if you were into that kind of stuff (as my old friends at CERN are), you would spend the rest of your days trying to figure out what happened.

What does it all have to do with romance? Well, not much really. But you wouldn’t have read this far if I hadn’t put that word in the title, would you? It is just that certain developments in my personal life have made me look inward and think. Now, don’t get too inquisitive, don’t pry 🙂

To me, any kind of thought process is best carried out through analogies and patterns, however contrived and tortured they may seem to normal people. Here is an example of such a desperate search for patterns, and another misanthropic one. And one about life itself. I think it is the sign of a true scientist, but then again, it is only my opinion – a rather self-serving one at that.

Back to romancing the quark – I think some people, maybe you, enjoy the same kind of relaxed ease or asymptotic freedom as long as the color force of romance is weak. This ease makes you romantically desirable. But the moment the romantic force begins to make itself felt, you tense up. Unholy thoughts and feelings, such as insecurity and jealousy, begin to pop up, much like the pair production when quarks try to escape their confinement. The descending darkness makes you dislike yourself. And of course, when you don’t like yourself, nobody else is going to like you either and you soon end up in your romantic singlet confinement, after having spawned a stable pairing or an unstable mess for the object of your affection. You are then free once again to enjoy your asymptotic ease, and the cycle continues. Such is the life of a quark, asymptotically free and universally desired, but eternally confined to singlet states devoid of color and romance. That, my friend, is the physics behind romance.

Disclaimer: This study was conducted with a sample size of one and no control group. Make of it what you will.

Interpretation of Special Relativity

When we looked at Quantum Mechanics, we talked about its various interpretations. The reason we have such interpretations, I said, is that QM deals with a reality that we have no access to, through our sensory and perceptual apparatuses. On the other hand, Special Relativity is about macro objects in motion, and we have no problem imagining such things. So why would we need to have an interpretation? The answer is a subtle one.
Continue reading

Speed of Light

The speed of light being a constant sounds like a simple statement. But there is more to it, quite a bit more. Let’s look at what this constancy really means. At first glance, it says that if you are standing somewhere, and there is a ray of light going from your right to left, it has a speed c. And another ray of light going from left to right also has a speed c. So far, so good. Now let’s say you are in a rocket ship, as shown in the figure below, moving from right to left.

Continue reading

Historical Origin of Quantum Mechanics

In this section, we will try to look at the historical origin of Quantum Mechanics, which is usually presented succinctly using scary looking mathematical formulas. The role of mathematics in physics, as Richard Feynman explains (in his lectures on QED given in Auckland, New Zealand in 1979, available on YouTube, but as poor quality recordings) is purely utilitarian.
Continue reading

Quantum Mechanics

Quantum Mechanics (QM) is the physics of small things. How do they behave and how do they interact with each other? Conspicuously absent from this framework of QM is why. Why small things do what they do is a question QM leaves alone. And, if you are to make any headway into this subject, your best bet is to curb your urge to ask why. Nature is what she is. Our job is to understand the rules by which she plays the game of reality, and do our best to make use of those rules to our advantage in experiments and technologies. Ours is not to reason why. Really.

Continue reading

Classical Physics

The main difficulty in describing particle physics to general public is the fact that it is built on modern physics. Even if you are physics aficionado and did extremely well in your high school physics, what you have learned and loved is classical physics. The difference between classical physics and modern physics is not just more physics, but a completely new way of looking at the reality around us.
Continue reading