Category Archives: Science

My thoughts on non-physics sciences — like evolutionary biology, cognitive neuroscience etc.

Are You an Introvert?

Here is a simple 20-question quiz to see if you are an introvert or an extrovert. Introverts tend to agree with most of these statements. So if you get a score of close to 100%, you are a confirmed introvert, which is not a bad thing. You are likely to be a quiet, contemplative type with strong family ties and a generally balanced outlook in life. On the other hand, if you get close to 0%, congratulations, I see stock options in your future. And you are a party animal and believe that life is supposed to be wall-to-wall fun, which it will be for you. I’m not too sure of those in the middle though.

I prefer one-on-one conversations to group activities.
I often prefer to express myself in writing.
I enjoy solitude.
I seem to care about wealth, fame, and status less than my peers.
I dislike small talk, but I enjoy talking in-depth about topics that matter to me.
People tell me that I’m a good listener.
I’m not a big risk-taker.
I enjoy work that allows me to “dive in” with few interruptions.
I like to celebrate birthdays on a small scale, with only one or two close friends or family members.
People describe me as “soft-spoken” or “mellow.”
I prefer not to show or discuss my work with others until it’s finished.
I dislike conflict.
I do my best work on my own.
I tend to think before I speak.
I feel drained after being out and about, even if I’ve enjoyed myself.
I often let calls go through to voice-mail.
If I had to choose, I’d prefer a weekend with absolutely nothing to do to one with too many things scheduled.
I don’t enjoy multi-tasking.
I can concentrate easily.
In classroom situations, I prefer lectures to seminars.
title: Are you an introvert?

These questions are from Susan Cain’s best seller, Quiet: The Power of Introverts in a World That Can’t Stop Talking, and a prelude to my review of it. The questions are copyrighted to Cain, and are reproduced here with the understanding that it constitutes “fair use.” If you have any concerns about it, feel free to contact me.

The Student Debt Crisis

[Guest Post by By Sofia Rasmussen]

It has become common knowledge as certain as death and taxes that a college education leads to a better life. A recent Pew research poll found that Americans holding a Bachelor’s Degree can expect to make an additional $650,000 on average than those who have only graduated high school. That said, the loans many college students and parents need to take out to pay for higher education have college graduates asking themselves if it’s all worth it. Students are asking if that trip to MIT really a good investment at a 7% compounding interest rate and if going to Harvard is really worth that much more than a top online PhD degree. As debt increases, recent graduates are entering the workforce already overwhelmed, and economists are speculating as to whether the current trends in student loans may be leading to the nation’s next major debt crisis.

It’s easy to see why student loan debtors and economists are concerned. According to a report by the National Association of Consumer Bankruptcy Attorneys, individual college seniors owed an average of $25, 250 in 2010, up 5 percent from 2009. These trends are no less staggering on a macro level, with 2011 representing the first time that US student loan debt exceeds $1 trillion, higher than the amount of credit card debt Americans have accrued.  A report from Standard and Poor’s states that ‘student loan debt has ballooned and may turn into a pricing bubble’.

The US is not the only nation facing student debt issues. India has been struggling to handle  student loan applications that have more than doubled in five years, thanks to growing aspirations among the their previously lower economic class. As more Indians attend university, the cost of educational degrees has been on the rise and Educational loans from self-financing institutions in engineering, medical fields and management have become widely used. Also rising is default on debt, and India’s banks have taken notice. Banks have aimed to address bad loans by linking loan approval to employability. It is telling, then, that India’s banks do not provide any loan at all for a degree in Arts.

Whether or not student loan debt will lead to disaster for the economy at large remains to be seen, but for recent graduates, the crisis is readily apparent. Owing $25 thousand without ever having a full-time job or experience in one’s desired field can have a profound psychological effect. The student loan anxiety can impact job decisions throughout an entire career. Even if there are openings in the fields they specialize in during college, the burden of debt leads recent graduates to opt for work with the fewest potential risks. Often this work is outside of a student’s preferred field or less intellectually stimulating than they’re capable of handling. According to a recent article in The New York Times, only half the jobs landed by new graduates even require a college degree. A graduate with a degree in Arts may be dismayed to find there is little market for a vast and intricate knowledge of WWII era British Literature, even if they had found their knowledge of the subject lead to great success in college.

While the outlook is better for a sciences graduate, they too are often saddled with work in fields that are very different from what they passionately studied at university. There is certainly no lack of need in the sciences, but often graduates with little experience outside of the classroom are saddled with grueling hours and demanding work, work they would never take if it  weren’t for the threat of crushing debts to pay off.

Even as the cost of education continues to rise, parents around the world happily risk tens of thousands of dollars to send their children to best schools they can afford. For most young people, college remains a good investment. What may be changing is the sense of freedom that has traditionally been associated with college. Students may be expected to know exactly what they want to study much earlier in their educational career, perhaps even choosing specialized skill schools as opposed to the more rounded university experience. While it’s true, this may result in less culturally savvy graduates, for many students it may be the practical solution for an economically feasible life.

Bye Bye Einstein

Starting from his miraculous year of 1905, Einstein has dominated physics with his astonishing insights on space and time, and on mass and gravity. True, there have been other physicists who, with their own brilliance, have shaped and moved modern physics in directions that even Einstein couldn’t have foreseen; and I don’t mean to trivialize neither their intellectual achievements nor our giant leaps in physics and technology. But all of modern physics, even the bizarre reality of quantum mechanics, which Einstein himself couldn’t quite come to terms with, is built on his insights. It is on his shoulders that those who came after him stood for over a century now.

One of the brighter ones among those who came after Einstein cautioned us to guard against our blind faith in the infallibility of old masters. Taking my cue from that insight, I, for one, think that Einstein’s century is behind us now. I know, coming from a non-practicing physicist, who sold his soul to the finance industry, this declaration sounds crazy. Delusional even. But I do have my reasons to see Einstein’s ideas go.

[animation]Let’s start with this picture of a dot flying along a straight line (on the ceiling, so to speak). You are standing at the centre of the line in the bottom (on the floor, that is). If the dot was moving faster than light, how would you see it? Well, you wouldn’t see anything at all until the first ray of light from the dot reaches you. As the animation shows, the first ray will reach you when the dot is somewhere almost directly above you. The next rays you would see actually come from two different points in the line of flight of the dot — one before the first point, and one after. Thus, the way you would see it is, incredible as it may seem to you at first, as one dot appearing out of nowhere and then splitting and moving rather symmetrically away from that point. (It is just that the dot is flying so fast that by the time you get to see it, it is already gone past you, and the rays from both behind and ahead reach you at the same instant in time.Hope that statement makes it clearer, rather than more confusing.).

[animation]Why did I start with this animation of how the illusion of a symmetric object can happen? Well, we see a lot of active symmetric structures in the universe. For instance, look at this picture of Cygnus A. There is a “core” from which seem to emanate “features” that float away to the “lobes.” Doesn’t it look remarkably similar to what we would see based on the animation above? There are other examples in which some feature points or knots seem to move away from the core where they first appear at. We could come up with a clever model based on superluminality and how it would create illusionary symmetric objects in the heavens. We could, but nobody would believe us — because of Einstein. I know this — I tried to get my old physicist friends to consider this model. The response is always some variant of this, “Interesting, but it cannot work. It violates Lorentz invariance, doesn’t it?” LV being physics talk for Einstein’s insistence that nothing should go faster than light. Now that neutrinos can violate LV, why not me?

Of course, if it was only a qualitative agreement between symmetric shapes and superluminal celestial objects, my physics friends are right in ignoring me. There is much more. The lobes in Cygnus A, for instance, emit radiation in the radio frequency range. In fact, the sky as seen from a radio telescope looks materially different from what we see from an optical telescope. I could show that the spectral evolution of the radiation from this superluminal object fitted nicely with AGNs and another class of astrophysical phenomena, hitherto considered unrelated, called gamma ray bursts. In fact, I managed to publish this model a while ago under the title, “Are Radio Sources and Gamma Ray Bursts Luminal Booms?“.

You see, I need superluminality. Einstein being wrong is a pre-requisite of my being right. So it is the most respected scientist ever vs. yours faithfully, a blogger of the unreal kind. You do the math. 🙂

Such long odds, however, have never discouraged me, and I always rush in where the wiser angels fear to tread. So let me point out a couple of inconsistencies in SR. The derivation of the theory starts off by pointing out the effects of light travel time in time measurements. And later on in the theory, the distortions due to light travel time effects become part of the properties of space and time. (In fact, light travel time effects will make it impossible to have a superluminal dot on a ceiling, as in my animation above — not even a virtual one, where you take a laser pointer and turn it fast enough that the laser dot on the ceiling would move faster than light. It won’t.) But, as the theory is understood and practiced now, the light travel time effects are to be applied on top of the space and time distortions (which were due to the light travel time effects to begin with)! Physicists turn a blind eye to this glaring inconstancy because SR “works” — as I made very clear in my previous post in this series.

Another philosophical problem with the theory is that it is not testable. I know, I alluded to a large body of proof in its favor, but fundamentally, the special theory of relativity makes predictions about a uniformly moving frame of reference in the absence of gravity. There is no such thing. Even if there was, in order to verify the predictions (that a moving clock runs slower as in the twin paradox, for instance), you have to have acceleration somewhere in the verification process. Two clocks will have to come back to the same point to compare time. The moment you do that, at least one of the clocks has accelerated, and the proponents of the theory would say, “Ah, there is no problem here, the symmetry between the clocks is broken because of the acceleration.” People have argued back and forth about such thought experiments for an entire century, so I don’t want to get into it. I just want to point out that theory by itself is untestable, which should also mean that it is unprovable. Now that there is direct experimental evidence against the theory, may be people will take a closer look at these inconsistencies and decide that it is time to say bye-bye to Einstein.

Why not Discard Special Relativity?

Nothing would satisfy my anarchical mind more than to see the Special Theory of Relativity (SR) come tumbling down. In fact, I believe that there are compelling reasons to consider SR inaccurate, if not actually wrong, although the physics community would have none of that. I will list my misgivings vis-a-vis SR and present my case against it as the last post in this series, but in this one, I would like to explore why it is so difficult to toss SR out the window.

The special theory of relativity is an extremely well-tested theory. Despite my personal reservations about it, the body of proof for the validity of SR is really enormous and the theory has stood the test of time — at least so far. But it is the integration of SR into the rest of modern physics that makes it all but impossible to write it off as a failed theory. In experimental high energy physics, for instance, we compute the rest mass of a particle as its identifying statistical signature. The way it works is this: in order to discover a heavy particle, you first detect its daughter particles (decay products, that is), measure their energies and momenta, add them up (as “4-vectors”), and compute the invariant mass of the system as the modulus of the aggregate energy-momentum vector. In accordance with SR, the invariant mass is the rest mass of the parent particle. You do this for many thousands of times and make a distribution (a “histogram”) and detect any statistically significant excess at any mass. Such an excess is the signature of the parent particle at that mass.

Almost every one of the particles in the particle data book that we know and love is detected using some variant of this method. So the whole Standard Model of particle physics is built on SR. In fact, almost all of modern physics (physics of the 20th century) is built on it. On the theory side, in the thirties, Dirac derived a framework to describe electrons. It combined SR and quantum mechanics in an elegant framework and predicted the existence of positrons, which bore out later on. Although considered incomplete because of its lack of sound physical backdrop, this “second quantization” and its subsequent experimental verification can be rightly seen as evidence for the rightness of SR.

Feynman took it further and completed the quantum electrodynamics (QED), which has been the most rigorously tested theory ever. To digress a bit, Feynman was once being shown around at CERN, and the guide (probably a prominent physicist himself) was explaining the experiments, their objectives etc. Then the guide suddenly remembered who he was talking to; after all, most of the CERN experiments were based on Feynman’s QED. Embarrassed, he said, “Of course, Dr. Feynman, you know all this. These are all to verify your predictions.” Feynman quipped, “Why, you don’t trust me?!” To get back to my point and reiterate it, the whole edifice of the standard model of particle physics is built on top of SR. Its success alone is enough to make it impossible for modern physics to discard SR.

So, if you take away SR, you don’t have the Standard Model and QED, and you don’t know how accelerator experiments and nuclear bombs work. The fact that they do is proof enough for the validity of SR, because the alternative (that we managed to build all these things without really knowing how they work) is just too weird. It’s not just the exotic (nuclear weaponry and CERN experiments), but the mundane that should convince us. Fluorescent lighting, laser pointers, LED, computers, mobile phones, GPS navigators, iPads — in short, all of modern technology is, in some way, a confirmation of SR.

So the OPERA result on observed superluminalily has to be wrong. But I would like it to be right. And I will explain why in my next post. Why everything we accept as a verification of SR could be a case of mass delusion — almost literally. Stay tuned!

Faster than Light

CERN has published news about some subatomic particles exceeding the speed of light, according to BBC and other sources. If confirmed true, this will remove the linchpin of modern physics — it is hard to overstate how revolutionary this discovery would be to our collective understanding of world we live in, from finest structure of matter to the time evolution of the cosmos. My own anarchical mind revels at the thought of all of modern physics getting rewritten, but I also have a much more personal stake in this story. I will get to it later in this series of posts. First, I want to describe the backdrop of thought that led to the notion that the speed of light could not be breached. The soundness of that scientific backdrop (if not the actual conclusion about the inviolability of light-speed) makes it very difficult to forgo the intellectual achievements of the past one hundred years in physics, which is what we will be doing once we confirm this result. In my second post, I will list what these intellectual achievements are, and how drastically their form will have to change. The scientists who discovered the speed violation, of course, understand this only too well, which is why they are practically begging the rest of the physics community to find a mistake in this discovery of theirs. As it often happens in physics, if you look for something hard enough, you are sure to find it — this is the experimental bias that all experimental physicists worth their salt are aware of and battle against. I hope a false negation doesn’t happen, for, as I will describe in my third post in this series, if confirmed, this speed violation is of tremendous personal importance to me.

The constancy (and the resultant inviolability) of the speed of light, of course, comes from Einstein’s Special Theory of Relativity, or SR. This theory is an extension of a simple idea. In fact, Einstein’s genius is in his ability to carry a simple idea to its logically inevitable, albeit counter-intuitive (to the point of being illogical!) conclusion. In the case of SR, he picks an idea so obvious — that the laws of physics should be independent of the state of motion. If you are in a train going at a constant speed, for instance, you can’t tell whether you are moving or not (if you close the windows, that is). The statement “You can’t tell” can be recast in physics as, “There is no experiment you can device to detect your state of motion.” This should be obvious, right? After all, if the laws kept changing every time you moved about, it is as good as having no laws at all.

Then came Maxwell. He wrote down the equations of electricity and magnetism, thereby elegantly unifying them. The equations state, using fancy vector notations, that a changing magnetic field will create an electric field, and a changing electric field will create a magnetic field, which is roughly how a car alternator and an electric motor work. These elegant equations have a wave solution.

The existence of a wave solution is no surprise, since a changing electric field generates a magnetic field, which in turn generates an electric field, which generates a magnetic filed and so on ad infinitum. What is surprising is the fact that the speed of propagation of this wave predicted by Maxwell’s equations is c, the speed of light. So it was natural to suppose that light was a form of electromagnetic radiation, which means that if you take a magnet and jiggle it fast enough, you will get light moving away from you at c – if we accept that light is indeed EM wave.

What is infinitely more fundamental is the question whether Maxwell’s equations are actually laws of physics. It is hard to argue that they aren’t. Then the follow-up question is whether these equations should obey the axiom that all laws of physics are supposed to obey — namely they should be independent of the state of motion. Again, hard to see why not. Then how do we modify Maxwell’s equations such that they are independent of motion? This is the project Einstein took on under the fancy name, “Covariant formulation of Maxwell’s equations,” and published the most famous physics article ever with an even fancier title, “On the Electrodynamics of Moving Bodies.” We now call it the Special Theory of Relativity, or SR.

To get a bit technical, Maxwell’s equations have the space derivatives of electric and magnetic fields relating to the time derivatives of charges and currents. In other words, space and time are related through the equations. And the wave solution to these equations with the propagation speed of c becomes a constraint on the properties of space and time. This is a simple philosophical look on SR, more than a physics analysis.

Einstein’s approach was to employ a series of thought experiments to establish that you needed a light signal to sync clocks and hypothesize that the speed of light had to be constant in all moving frames of reference. In other words, the speed of light is independent of the state of motion, as it has to be if Maxwell’s equations are to be laws of physics.

This aspect of the theory is supremely counter-intuitive, which is physics lingo to say something is hard to believe. In the case of the speed of light, you take a ray of light, run along with it at a high speed, and measure its speed, you still get c. Run against it and measure it — still c. To achieve this constancy, Einstein rewrote the equations of velocity addition and subtraction. On consequence of these rewritten equations is that nothing can go faster than light.

This is my long-winded description of the context in which the speed violation measured at OPERA has to be seen. If the violation is confirmed, we have a few unpleasant choices to pick from:

  1. Electrodynamics (Maxwell’s equations) is not invariant under motion.
  2. Light is not really electromagnetic in nature.
  3. SR is not the right covariant formulation of electrodynamics.

The first choice is patently unacceptable because it is tantamount to stating that electrodynamics is not physics. A moving motor (e.g., if you take your electric razor on a flight) would behave differently from a static one (you may not be able to shave). The second choice also is quite absurd. In addition to the numeric equality between the speed of the waves from Maxwell’s equations and the measured value of c, we do have other compelling reasons why we should believe that light is EM waves. Radio waves induce electric signals in an antenna, light knocks of electrons, microwaves can excite water molecules and cook food and so on.

The only real choice we are left with is the last one — which is to say SR is wrong. Why not discard SR? More reasons than a blog post can summarize, but I’ll try to summarize them any way in my next post.

The Unreal Universe

We know that our universe is a bit unreal. The stars we see in the night sky, for instance, are not really there. They may have moved or even died by the time we get to see them. It takes light time to travel from the distant stars and galaxies to reach us. We know of this delay. The sun that we see now is already eight minutes old by the time we see it, which is not a big deal. If we want to know what is going on at the sun right now, all we have to do is to wait for eight minutes. Nonetheless, we do have to “correct” for the delay in our perception due to the finite speed of light before we can trust what we see.

Now, this effect raises an interesting question — what is the “real” thing that we see? If seeing is believing, the stuff that we see should be the real thing. Then again, we know of the light travel time effect. So we should correct what we see before believing it. What then does “seeing” mean? When we say we see something, what do we really mean?

Seeing involves light, obviously. It is the finite (albeit very high) speed of light influences and distorts the way we see things, like the delay in seeing objects like stars. What is surprising (and seldom highlighted) is that when it comes to seeing moving objects, we cannot back-calculate the same way we take out the delay in seeing the sun. If we see a celestial body moving at an improbably high speed, we cannot figure out how fast and in what direction it is “really” moving without making further assumptions. One way of handling this difficulty is to ascribe the distortions in our perception to the fundamental properties of the arena of physics — space and time. Another course of action is to accept the disconnection between our perception and the underlying “reality” and deal with it in some way.

This disconnect between what we see and what is out there is not unknown to many philosophical schools of thought. Phenomenalism, for instance, holds the view that space and time are not objective realities. They are merely the medium of our perception. All the phenomena that happen in space and time are merely bundles of our perception. In other words, space and time are cognitive constructs arising from perception. Thus, all the physical properties that we ascribe to space and time can only apply to the phenomenal reality (the reality as we sense it). The noumenal reality (which holds the physical causes of our perception), by contrast, remains beyond our cognitive reach.

One, almost accidental, difficulty in redefining the effects of the finite speed of light as the properties of space and time is that any effect that we do understand gets instantly relegated to the realm of optical illusions. For instance, the eight-minute delay in seeing the sun, because we can readily understand it and disassociate it from our perception using simple arithmetic, is considered a mere optical illusion. However, the distortions in our perception of fast moving objects, although originating from the same source are considered a property of space and time because they are more complex. At some point, we have to come to terms with the fact that when it comes to seeing the universe, there is no such thing as an optical illusion, which is probably what Goethe pointed out when he said, “Optical illusion is optical truth.”

More about The Unreal UniverseThe distinction (or lack thereof) between optical illusion and truth is one of the oldest debates in philosophy. After all, it is about the distinction between knowledge and reality. Knowledge is considered our view about something that, in reality, is “actually the case.” In other words, knowledge is a reflection, or a mental image of something external. In this picture, the external reality goes through a process of becoming our knowledge, which includes perception, cognitive activities, and the exercise of pure reason. This is the picture that physics has come to accept. While acknowledging that our perception may be imperfect, physics assumes that we can get closer and closer to the external reality through increasingly finer experimentation, and, more importantly, through better theorization. The Special and General Theories of Relativity are examples of brilliant applications of this view of reality where simple physical principles are relentlessly pursued using the formidable machine of pure reason to their logically inevitable conclusions.

But there is another, competing view of knowledge and reality that has been around for a long time. This is the view that regards perceived reality as an internal cognitive representation of our sensory inputs. In this view, knowledge and perceived reality are both internal cognitive constructs, although we have come to think of them as separate. What is external is not the reality as we perceive it, but an unknowable entity giving rise to the physical causes behind sensory inputs. In this school of thought, we build our reality in two, often overlapping, steps. The first step consists of the process of sensing, and the second one is that of cognitive and logical reasoning. We can apply this view of reality and knowledge to science, but in order do so, we have to guess the nature of the absolute reality, unknowable as it is.

The ramifications of these two different philosophical stances described above are tremendous. Since modern physics has embraced a non-phenomenalistic view of space and time, it finds itself at odds with that branch of philosophy. This chasm between philosophy and physics has grown to such a degree that the Nobel prize winning physicist, Steven Weinberg, wondered (in his book “Dreams of a Final Theory”) why the contribution from philosophy to physics have been so surprisingly small. It also prompts philosophers to make statements like, “Whether ‘noumenal reality causes phenomenal reality’ or whether ‘noumenal reality is independent of our sensing it’ or whether ‘we sense noumenal reality,’ the problem remains that the concept of noumenal reality is a totally redundant concept for the analysis of science.”

From the perspective of cognitive neuroscience, everything we see, sense, feel and think is the result of the neuronal interconnections in our brain and the tiny electrical signals in them. This view must be right. What else is there? All our thoughts and worries, knowledge and beliefs, ego and reality, life and death — everything is merely neuronal firings in the one and half kilograms of gooey, grey material that we call our brain. There is nothing else. Nothing!

In fact, this view of reality in neuroscience is an exact echo of phenomenalism, which considers everything a bundle of perception or mental constructs. Space and time are also cognitive constructs in our brain, like everything else. They are mental pictures our brains concoct out of the sensory inputs that our senses receive. Generated from our sensory perception and fabricated by our cognitive process, the space-time continuum is the arena of physics. Of all our senses, sight is by far the dominant one. The sensory input to sight is light. In a space created by the brain out of the light falling on our retinas (or on the photo sensors of the Hubble telescope), is it a surprise that nothing can travel faster than light?

This philosophical stance is the basis of my book, The Unreal Universe, which explores the common threads binding physics and philosophy. Such philosophical musings usually get a bad rap from us physicists. To physicists, philosophy is an entirely different field, another silo of knowledge, which holds no relevance to their endeavors. We need to change this belief and appreciate the overlap among different knowledge silos. It is in this overlap that we can expect to find great breakthroughs in human thought.

The twist to this story of light and reality is that we seem to have known all this for a long time. Classical philosophical schools seem to have thought along lines very similar to Einstein’s reasonings. The role of light in creating our reality or universe is at the heart of Western religious thinking. A universe devoid of light is not simply a world where you have switched off the lights. It is indeed a universe devoid of itself, a universe that doesn’t exist. It is in this context that we have to understand the wisdom behind the statement that “the earth was without form, and void” until God caused light to be, by saying “Let there be light.”

The Quran also says, “Allah is the light of the heavens and the earth,” which is mirrored in one of the ancient Hindu writings: “Lead me from darkness to light, lead me from the unreal to the real.” The role of light in taking us from the unreal void (the nothingness) to a reality was indeed understood for a long, long time. Is it possible that the ancient saints and prophets knew things that we are only now beginning to uncover with all our supposed advances in knowledge?

I know I may be rushing in where angels fear to tread, for reinterpreting the scriptures is a dangerous game. Such alien interpretations are seldom welcome in the theological circles. But I seek refuge in the fact that I am looking for concurrence in the metaphysical views of spiritual philosophies, without diminishing their mystical and theological value.

The parallels between the noumenal-phenomenal distinction in phenomenalism and the Brahman-Maya distinction in Advaita are hard to ignore. This time-tested wisdom on the nature of reality from the repertoire of spirituality is now being reinvented in modern neuroscience, which treats reality as a cognitive representation created by the brain. The brain uses the sensory inputs, memory, consciousness, and even language as ingredients in concocting our sense of reality. This view of reality, however, is something physics is yet to come to terms with. But to the extent that its arena (space and time) is a part of reality, physics is not immune to philosophy.

As we push the boundaries of our knowledge further and further, we are beginning to discover hitherto unsuspected and often surprising interconnections between different branches of human efforts. In the final analysis, how can the diverse domains of our knowledge be independent of each other when all our knowledge resides in our brain? Knowledge is a cognitive representation of our experiences. But then, so is reality; it is a cognitive representation of our sensory inputs. It is a fallacy to think that knowledge is our internal representation of an external reality, and therefore distinct from it. Knowledge and reality are both internal cognitive constructs, although we have come to think of them as separate.

Recognizing and making use of the interconnections among the different domains of human endeavor may be the catalyst for the next breakthrough in our collective wisdom that we have been waiting for.

Free Will — An Illusion?

If we can let ourselves be amazed at the fact that our non-material ethereal mind can really actuate things in the physical world, we will find ourselves wondering — do we really have free will? If free will is merely a pattern in the electrical activities in our brain, how can such a pattern cause changes and rearrangements in the physical world? Could it be that this pattern is really causing an illusion of free will?

Logic in the form of Occam’s Razor should direct us to the latter possibility. But logic doesn’t apply to many or most of the fundamental hypotheses of life, which answer to a different set of rules. They answer to the mythos, the sum total of the intangible knowledge and wisdom passed down from the past, from the ancient, forgotten masters talking to us through our teachers and folklore, through the structure of our languages and the backdrop of our thoughts, and through the very foundation of our sense of being and consciousness. The mythos tell us that we do have free will, and the logic that came later is powerless to break this notion. So it may be that these words that flow out of my pen into this notepad and later to your computer screen were all predetermined and I had no choice but to write then down. But it certainly is not the way I feel. I do feel as though I can delete any word here. Heck, I can delete the whole post if I want to.

On the side of logic, I will describe an experiment that casts doubt on our notion of free will. From neuroscience, we know that there is a time lag of about half a second between the moment “we” take a decision and the moment we become aware of it. This time lag raises the question of who is taking the decision because, in the absence of our conscious awareness, it is not clear that the decision is really ours. In the experimental setup testing this phenomenon, the subject is hooked up to a computer that records his brain activities (EEG). The subject is then asked make a conscious decision to move either the right hand or the left hand at a time of his choosing. The choice of right or left is also up to the subject. The computer always detects which hand the subject is going to move about half a second before the subject is aware of his own intention. The computer can then order the subject to move that hand — an order that the subject will be unable to disobey. Does the subject have free will in this case?

In fact, I wrote about it in my book, and posted it here some time ago. In that post, I added that free will might be a fabrication of our brain after the real action. In other words, the real action takes place by instinct, and the sense of decision is introduced to our consciousness as an afterthought. Some of my readers pointed out that being unaware of a decision was not the same as having no free will over it. For instance, when you drive, you take a series of decisions without really being aware of them. It doesn’t mean that these decisions are not yours. Good point, but does it really make sense to call a decision yours when you don’t have any control over it, even if you would take the same decision if you did? If something flies into your eyes, you will flinch and close your eyes. Good survival instinct and reflex. But given that you cannot control it, is it a part of your free will?

A more elaborate example comes from hypnotic suggestion. I heard this story from one of the lectures by John Searle — a man was hypnotically instructed to respond to the word “Germany” by crawling on the floor. After the hypnosis session, when the man was lucid and presumably exercising his free will, the trigger word was used in a conversation. The man suddenly says something like, “I just remembered, I need to remodel my house, and these tiles look great. Mind if I take a closer look?” and crawls on the floor. Did he do it of his own volition? To him, yes, but to the rest, now.

So, how do we know for sure that our sense of free will is not an elaborate scam that our brain is perpetrating on “us” (whatever that means!)

Now I am actually pushing the argument a bit further. But think about it, how can the spaceless, massless, material-less entities that are our intentions make real changes in the physical world around us? In writing this post, how can I break the laws of physics in moving things around quite independent of their current state just because I want to?

Is free will an epiphenomenon — something that emerges after-the-fact? A good analogy is that of froth riding on the waves on a beach. The froth may be thinking, “Oh my god, what a tough life! I have to haul all these big waves back and forth. Every day of my life, no break, no vacation!” But that is not what is going on. The waves are just sloshing around, and the froth just happens to emerge. Are our lives just moving along on their own preordained paths, while we, like the epiphenomenal froth, think that we have control and free will?

Only a Matter of Time

Although we speak of space and time in the same breath, they are quite different in many ways. Space is something we perceive all around us. We see it (rather, objects in it), we can move our hand through it, and we know that if our knee tries to occupy the same space as, say, the coffee table, it is going to hurt. In other words, we have sensory correlates to our notion of space, starting from our most precious sense of sight.

Time, on the other hand, has no direct sensory backing. And for this reason, it becomes quite difficult to get a grip over it. What is time? We sense it indirectly through change and motion. But it would be silly to define time using the concepts of change and motion, because they already include the notion of time. The definition would be cyclic.

Assuming, for now, that no definition is necessary, let’s try another perhaps more tractable issue. Where does this strong sense of time come from? I once postulated that it comes from our knowledge of our demise — that questionable gift that we all possess. All the time durations that we are aware of are measured against the yardstick of our lifespan, perhaps not always consciously. I now wonder if this postulate is firm enough, and further ruminations on this issue have convinced me that I am quite ignorant of these things and need more knowledge. Ah.. only if I had more time. 🙂

In any case, even this more restricted question of the origin of time doesn’t seem to be that tractable, after all. Physics has another deep problem with time. It has to do with the directionality. It cannot easily explain why time has a direction — an arrow, as it were. This arrow does not present itself in the fundamental laws governing physical interactions. All the laws in physics are time reversible. The laws of gravity, electromagnetism or quantum mechanics are all invariant with respect to a time reversal. That is to say, they look the same with time going forward or backward. So they give no clue as to why we experience the arrow of time.

Yet, we know that time, as we experience it, is directional. We can remember the past, but not the future. What we do now can affect the future, but not the past. If we play a video tape backwards, the sequence of events (like broken pieces of glass coming together to for a vase) will look funny to us. However, if we taped the motion of the planets in a solar system, or the electron cloud in an atom, and played it backward to a physicist, he would not find anything funny in the sequences because the physical laws are reversible.

Physics considers the arrow of time an emergent property of statistical collections. To illustrate this thermodynamic explanation of time, let’s consider an empty container where we place some dry ice. After some time, we expect to see a uniform distribution of carbon dioxide gas in the container. Once spread out, we do not expect the gas in the container to coagulate into solid dry ice, no matter how long we wait. The video of CO2 spreading uniformly in the container is a natural one. Played backward, the sequence of the CO2 gas in the container congealing to solid dry ice in a corner would not look natural to us because it violates our sense of the arrow of time.

The apparent uniformity of CO2 in the container is due to the statistically significant quantity of dry ice we placed there. If we manage to put a small quantity, say five molecules of CO2, we can fully expect to see the congregation of the molecules in one location once in a while. Thus, the arrow of time manifests itself as a statistical or thermodynamic property. Although the directionality of time seems to emerge from reversible physical laws, its absence in the fundamental laws does look less than satisfactory philosophically.

Half a Bucket of Water

We all see and feel space, but what is it really? Space is one of those fundamental things that a philosopher may consider an “intuition.” When philosophers look at anything, they get a bit technical. Is space relational, as in, defined in terms of relations between objects? A relational entity is like your family — you have your parents, siblings, spouse, kids etc. forming what you consider your family. But your family itself is not a physical entity, but only a collection of relationships. Is space also something like that? Or is it more like a physical container where objects reside and do their thing?

You may consider the distinction between the two just another one of those philosophical hairsplittings, but it really is not. What space is, and even what kind of entity space is, has enormous implications in physics. For instance, if it is relational in nature, then in the absence of matter, there is no space. Much like in the absence of any family members, you have no family. On the other hand, if it is a container-like entity, the space exists even if you take away all matter, waiting for some matter to appear.

So what, you ask? Well, let’s take half a bucket of water and spin it around. Once the water within catches on, its surface will form a parabolic shape — you know, centrifugal force, gravity, surface tension and all that. Now, stop the bucket, and spin the whole universe around it instead. I know, it is more difficult. But imagine you are doing it. Will the water surface be parabolic? I think it will be, because there is not much difference between the bucket turning or the whole universe spinning around it.

Now, let’s imagine that we empty the universe. There is nothing but this half-full bucket. Now it spins around. What happens to the water surface? If space is relational, in the absence of the universe, there is no space outside the bucket and there is no way to know that it is spinning. Water surface should be flat. (In fact, it should be spherical, but ignore that for a second.) And if space is container-like, the spinning bucket should result in a parabolic surface.

Of course, we have no way of knowing which way it is going to be because we have no way of emptying the universe and spinning a bucket. But that doesn’t prevent us from guessing the nature of space and building theories based on it. Newton’s space is container-like, while at their heart, Einstein’s theories have a relational notion of space.

So, you see, philosophy does matter.

On Rationality and Delusions

This post started as a reply to M Cuffe’s comment on my post on The God Delusion. M Cuffe suggested that I’m merely asserting an individual’s right to be irrational, or ignorant. Yes, I am indeed saying that one has the right to be irrational. But that statement stems from something that I believe is deeper. It stems from what we mean by rationality, and why we think it is a good thing to be rational. I know it sounds “irrational,” but I’m talking about rationality as Persig talked about it in Zen and the Art of Motorcycle Maintenance.

Stepping back a bit, rationality is quintessentially a worldview. By rational, we mean things that seem normal to our commonsense. So the notion of a nuclear bomb moving or obliterating a mountain is rational, although we have never seen it. You believe it because it is consistent with your worldview. I believe it too, trust me. I was a nuclear physicist not too long ago. 🙂

And a god (or faith) moving mountains is clearly ludicrous to our rationality. I’m not asking people to give equal rational weight to faith and bomb moving mountains. I’m merely encouraging them to examine why they believe in one and not the other. Calling one more rational is just another way of saying that you choose to believe one more than the other. Why?

Thinking along those lines, I come to the conclusion that it is only a question of worldviews or belief systems. I personally subscribe to your worldview based on rationality as well, which is why I consider myself also an atheist (although one of my readers thought I was merely confused :-))

A god as an old man hiding behind the clouds is not consistent with our worldview. But it may have been a metaphor for something else. Let me explain. We have these abstract concepts of happiness, perfection, grief etc. Are these things real? Should we believe they exist? Such questions don’t make too much sense because these concepts are all in our minds. But then, what isn’t?

Let’s take perfection, for instance. Let’s say we assign some human form to it, so that we could explain it to a child or something. We then call it, say, the goddess of perfection or whatever. Over generations, for whatever reason, the notion of perfection disappears from our awareness, but the metaphor of the goddess remains. Now, to somebody who believes in the reality perfection, and therefore the existence of the goddess, it is not a delusion. In that belief system, in that context and worldview, it makes perfect sense. But in the absence of the abstract concept of perfection, the goddess becomes a delusion.

I believe that a large part of our collective wisdom is handed down in the form of such metaphors. Instead of dismissing them as delusions because their context is gone, we should perhaps try harder to rediscover the lost concepts. I also believe such metaphors exist in other fields that seem to work well. Take, for instance, the Qi concept in traditional Chinese medicine, the five elements (or three body types) in Ayurveda and so on. To the extent that traditional Chinese medicine and Ayurveda work, there has to be some knowledge buried in those practices. If we write off their basis merely because their metaphors are not consistent with our rationality, we may be writing off some potential sources of new or forgotten knowledge.

In addition, I believe that some of our smarter geniuses indeed see delusional metaphors in what we take to be supremely real.