Tag Archives: velocidade da luz

Luz viagem no tempo efeitos e recursos cosmológicos

Este artigo não publicado é uma sequela para o meu artigo anterior (também postou aqui como “É Rádio Fontes e Gamma Ray Bursts Luminal Booms?“). Esta versão de blog contém o resumo, introdução e conclusões. A versão integral do artigo está disponível como um arquivo PDF.

.

Abstrato

Os efeitos do tempo de viagem Luz (LTT) são uma manifestação óptica da velocidade finita da luz. Eles também podem ser considerados limitações perceptual para a imagem cognitiva do espaço e do tempo. Com base nessa interpretação de efeitos LTT, que apresentou recentemente um novo modelo hipotético para a variação espacial e temporal do espectro da Gamma Ray Bursts (GRB) e fontes de rádio. Neste artigo, tomamos a análise mais e mostrar que os efeitos LTT pode fornecer um bom quadro para descrever tais características cosmológicas como a observação redshift de um universo em expansão, ea radiação cósmica de fundo. A unificação desses fenômenos aparentemente distintas em muito diferentes escalas de comprimento e tempo, juntamente com a sua simplicidade conceitual, podem ser considerados como indicadores da utilidade curioso deste quadro, se não a sua validade.

Introdução

A velocidade finita da luz desempenha um papel importante na forma como percebemos a distância ea velocidade. Este fato dificilmente deve vir como uma surpresa, porque nós sabemos que as coisas não são como nós os vemos. O sol que vemos, por exemplo, já é de oito minutos de idade no momento em que vê-lo. Este atraso é trivial; se queremos saber o que está acontecendo no sol agora, tudo o que temos a fazer é esperar por oito minutos. Nós, no entanto,, tem que “correto” para essa distorção em nossa percepção, devido à velocidade finita da luz antes que possamos confiar no que vemos.

O que é surpreendente (e raramente destaque) é que, quando se trata de sensores de movimento, não podemos voltar a calcular da mesma forma que tirar o atraso em ver o sol. Se vemos um corpo celeste se movendo a uma improvável alta velocidade, não podemos descobrir o quão rápido e em que direção é “realmente” movimento sem outros pressupostos. Uma maneira de lidar com essa dificuldade é atribuir as distorções na nossa percepção de movimento para as propriedades fundamentais da arena da física — espaço e tempo. Outra linha de ação é aceitar a desconexão entre a nossa percepção ea subjacente “realidade” e lidar com ele de alguma forma.

Explorando a segunda opção, assumimos uma realidade subjacente que dá origem à nossa imagem percebida. Nós modelo ainda mais essa realidade subjacente como obedecendo a mecânica clássica, e trabalhar a nossa imagem percebida através do aparelho de percepção. Em outras palavras, não atribuem as manifestações de velocidade finita da luz para as propriedades da realidade subjacente. Em vez, nós cuidamos da nossa imagem percebido que este modelo prevê e verificar se as propriedades que nós observamos podem se originar a partir desta restrição perceptual.

Espaço, os objetos nele, e seu movimento são, de um modo geral, o produto de percepção óptica. Um tende a tomar como certo que a percepção da realidade surge como um percebe. Neste artigo, tomamos a posição de que o que percebemos é uma imagem incompleta ou distorcida de uma realidade subjacente. Mais, estamos tentando out mecânica clássica para a realidade do subjacente (para a qual nós usamos termos como absoluta, realidade noumenal ou física) que faz com que a nossa percepção para ver se ele se encaixa com a nossa imagem percebida (que podemos nos referir à realidade como detectado ou fenomenal).

Note-se que não estamos dando a entender que as manifestações de percepção são meras ilusões. Eles não são; eles são de fato parte da nossa realidade detectada porque a realidade é um resultado final de percepção. Essa percepção pode estar por trás a famosa frase de Goethe, “Ilusão de ótica é a verdade óptica.”

Nós aplicamos essa linha de pensamento a um problema de física recentemente. Nós olhamos para a evolução do espectro de um GRB e achei que fosse notavelmente semelhante ao de um estrondo sônico. Usando este facto, apresentamos um modelo para GRB como a nossa percepção de um “luminal” árvore, com o entendimento de que é a nossa imagem percebida da realidade que obedece a invariância de Lorentz e nosso modelo para a realidade subjacente (fazendo com que a imagem percebida) pode violar física relativista. O acordo marcante entre o modelo e as características observadas, no entanto, prorrogada para além GRBs a fontes de rádio simétricas, que também pode ser considerado como efeitos perceptivos de booms luminais hipotéticas.

Neste artigo, olharmos para outras implicações do modelo. Começamos com as semelhanças entre o tempo de viagem de luz (LTT) efeitos e a transformação de coordenadas em Relatividade Especial (SR). Estas semelhanças não são surpreendentes porque SR deriva, em parte, com base nos efeitos LTT. Nós, então, propor uma interpretação da SR como uma formalização de efeitos LTT e estudar alguns fenômenos cosmológicos observados à luz desta interpretação.

Semelhanças entre a luz viajar no tempo Efeitos e SR

A relatividade especial visa coordenar uma transformação linear entre sistemas de coordenadas em movimento em relação ao outro. Podemos traçar a origem da linearidade de um pressuposto oculto sobre a natureza do espaço e do tempo construída em SR, como afirmou Einstein: “Em primeiro lugar, é evidente que as equações deve ser linear, em virtude das propriedades de homogeneidade que atribuímos a espaço e tempo.” Devido a essa suposição de linearidade, a derivação original das equações de transformação ignora a assimetria entre aproximando e se afastando objetos. Tanto a aproximação e recuo objectos pode ser descrito por dois sistemas que são sempre de recuo de cada outra coordenada. Por exemplo, se um sistema K está em movimento em relação a um outro sistema k ao longo do eixo X positivo de k, em seguida, um objeto em repouso K a uma positiva x está se afastando enquanto outro objeto em um negativo x está se aproximando de um observador na origem da k.

A transformação de coordenadas no trabalho original de Einstein é derivado, em parte, uma manifestação do tempo de viagem luz (LTT) efeitos e por consequência a imposição a constância da velocidade da luz em todos os referenciais inerciais. Isso é mais evidente no primeiro experimento de pensamento, onde os observadores se deslocam com uma haste de encontrar os seus relógios não sincronizado, devido à diferença nos tempos de viagem de luz ao longo do comprimento da haste. Contudo, na interpretação atual da SR, a transformação de coordenadas é considerado uma propriedade básica de espaço e tempo.

Uma dificuldade que surge a partir desta interpretação de SR é que a definição da velocidade relativa entre os dois quadros de inércia torna-se ambígua. Se for a velocidade da trama em movimento, conforme medido pelo observador, em seguida, o movimento superluminal observado em jatos de rádio a partir da região do núcleo torna-se uma violação do SR. Se for uma velocidade que temos a considerar os efeitos deduzir por LT, então temos que empregar a suposição ad-hoc extra que superluminality é proibido. Essas dificuldades sugerem que pode ser melhor para separar os efeitos de luz tempo de viagem do resto do SR.

Nesta secção, vamos considerar espaço e tempo como uma parte do modelo cognitivo criado pelo cérebro, e argumentam que a relatividade especial aplica-se ao modelo cognitivo. A realidade absoluta (de que o SR-como o espaço-tempo é a nossa percepção) não tem de obedecer às restrições da SR. Em particular, objectos não são restritas a velocidades subluminal, mas eles podem aparecer para nós como se eles estão restritos a velocidades subluminal em nossa percepção do espaço e do tempo. Se separar os efeitos LTT do resto do SR, podemos compreender uma grande variedade de fenômenos, como veremos neste artigo.

Ao contrário de SR, considerações baseadas em efeitos LTT resultar em conjunto intrinsecamente diferente de leis de transformação para objetos que se aproximam um observador e os afastando dele. Mais geralmente, a transformação depende do ângulo entre a velocidade do objecto e a linha de visão do observador. Uma vez que as equações de transformação com base em efeitos LTT tratar aproximando e se afastando objetos assimetricamente, eles fornecem uma solução natural para o paradoxo dos gêmeos, por exemplo.

Conclusões

Como o espaço eo tempo são uma parte de uma realidade criada a partir de insumos de luz para os nossos olhos, algumas das suas propriedades são manifestações de efeitos LTT, especialmente na nossa percepção do movimento. O absoluto, realidade física, presumivelmente, gerando as entradas de luz não tem que obedecer as propriedades que atribuímos ao nosso espaço e tempo percebido.

Nós mostramos que os efeitos LTT são qualitativamente idênticos aos do SR, observando que SR considera apenas quadros de referência recuando um do outro. Esta semelhança não é surpreendente, porque a transformação de coordenadas no SR é derivado com base, em parte, os efeitos LTT, e, em parte, na hipótese de que a luz viaja à mesma velocidade com que diz respeito a todos os inerciais. Em tratando-o como uma manifestação de LTT, nós não abordou a principal motivação de SR, que é uma formulação covariante das equações de Maxwell. Pode ser possível separar a covariância da eletrodinâmica a partir da transformação de coordenadas, embora não seja experimentada com este artigo.

Ao contrário de SR, Efeitos LTT são assimétricas. Esta assimetria fornece uma solução para o paradoxo dos gêmeos e uma interpretação das violações de causalidade assumidas associado com superluminality. Além disso, a percepção de superluminality é modulada por efeitos LTT, e explica gamma explosões de raios e jatos simétricos. Como mostramos no artigo, percepção do movimento superluminal também tem uma explicação para os fenômenos cosmológicos, como a expansão do universo e microondas radiação cósmica de fundo. Efeitos LTT deve ser considerada como uma restrição fundamental em nossa percepção, e, consequentemente, na física, ao invés de uma explicação conveniente para fenômenos isolados.

Tendo em conta que a nossa percepção é filtrada através de efeitos LTT, temos que deconvolute-los de nossa realidade percebida, a fim de compreender a natureza do absoluto, realidade física. Este deconvolution, no entanto, resulta em várias soluções. Assim, o absoluto, realidade física está além do nosso alcance, e qualquer suposto propriedades da realidade absoluta só pode ser validada através de quão bem a resultante percebido realidade está de acordo com nossas observações. Neste artigo, assumiu-se que a realidade subjacente obedece nossos mecânica clássica intuitivamente óbvio e fez a pergunta como essa realidade seria percebido quando filtrada através de efeitos de tempo de viagem luz. Nós demonstramos que este tratamento especial poderia explicar certos fenômenos astrofísicos e cosmológicos que observamos.

A transformação de coordenadas no SR pode ser visto como uma redefinição do espaço e do tempo (ou, mais geralmente, realidade) a fim de acomodar as distorções em nossa percepção do movimento, devido aos efeitos de tempo de viagem luz. Pode-se ser tentado a argumentar que se aplica ao SR “reais” espaço e tempo, não a nossa percepção. Essa linha de argumentação levanta a questão, o que é real? A realidade é somente um modelo cognitivo criado em nosso cérebro a partir de nossas entradas sensoriais, inputs visual que é o mais importante. O próprio espaço é uma parte deste modelo cognitivo. As propriedades do espaço são um mapeamento dos limites da nossa percepção.

A escolha de aceitar a nossa percepção como uma verdadeira imagem da realidade e redefinindo o espaço eo tempo como descrito na relatividade especial, na verdade equivale a uma escolha filosófica. A alternativa apresentada no artigo é inspirado pela visão da neurociência moderna que a realidade é um modelo cognitivo no cérebro com base em nossas informações sensoriais. Adotando essa alternativa nos reduz a adivinhar a natureza da realidade absoluta e comparando sua projeção previsto para nossa percepção real. Pode simplificar e explicar algumas teorias da física e explicar alguns fenômenos intrigantes em nosso universo. Contudo, esta opção é mais uma postura filosófica contra a realidade absoluta incognoscível.

Restrições de Percepção e Cognição em Física Relativística

Este post é uma versão online resumida do meu artigo que aparece na Galileu Eletrodinâmica em novembro, 2008. [Ref: Galileus Eletrodinâmica, Vôo. 19, Não. 6, Nov / Dez 2008, pp: 103–117] ()

Cognitive espaço e tempo trata de neurociência como representação do nosso cérebro de nossas entradas sensoriais. Neste ponto de vista, nossa realidade perceptiva é apenas um mapeamento distante e conveniente dos processos físicos fazendo com que as informações sensoriais. O som é um mapeamento das entradas auditivas, e o espaço é uma representação de informações visuais. Qualquer limitação na cadeia de detecção tem uma manifestação específica sobre a representação cognitiva que é a nossa realidade. Uma limitação física do nosso detecção visual é a velocidade da luz finita, que se manifesta como uma propriedade básica do nosso espaço-tempo. Neste artigo, olharmos para as consequências da velocidade limitada de nossa percepção, ou seja, a velocidade da luz, e mostrar que eles são muito semelhantes para a transformação de coordenadas na relatividade especial. A partir desta observação, e inspirado pela idéia de que o espaço é apenas um modelo cognitivo criado a partir de entradas de sinal de luz, examinamos as implicações de tratar a teoria da relatividade especial, como um formalismo para descrever os efeitos perceptivos devido à velocidade finita da luz. Usando essa estrutura, mostramos que podemos unificar e explicar uma grande variedade de astrofísica aparentemente não relacionados e fenômenos cosmológicos. Uma vez que identificar as manifestações das limitações na nossa percepção e representação cognitiva, podemos entender as consequentes restrições sobre nosso espaço e tempo, levando a uma nova compreensão da astrofísica e da cosmologia.

Palavras-chave: neurociência cognitiva; realidade; relatividade especial; efeito o tempo de viagem de luz; raios gama rajadas; microondas radiação cósmica de fundo.

1. Introdução

A nossa realidade é uma imagem mental que o nosso cérebro cria, a partir dos seus entradas sensoriais [1]. Embora este mapa cognitivo é muitas vezes considerado como uma imagem fiel das causas físicas por trás do processo de detecção, as próprias causas são inteiramente diferente da experiência perceptiva de sensoriamento. A diferença entre a representação cognitiva e suas causas físicas não é imediatamente óbvio quando consideramos o nosso sentido primário da visão. Mas, podemos apreciar a diferença olhando os sentidos olfativos e auditivos porque podemos usar o nosso modelo cognitivo baseado em visão a fim de compreender o funcionamento do 'menor’ juízo. Odores, que pode parecer ser uma propriedade do ar que respiramos, são, na verdade a representação de nosso cérebro das assinaturas químicas que nossos narizes detectam. Da mesma forma, som não é uma propriedade intrínseca de um corpo vibrando, mas mecanismo do nosso cérebro para representar ondas de pressão no ar que os nossos ouvidos sentido. A Tabela I mostra a cadeia, desde as causas físicas da entrada sensorial à realidade final como o cérebro cria-lo. Embora as causas físicas podem ser identificados para as cadeias olfactivos e auditivos, eles não são facilmente percebida por processo visual. Desde a visão é o sentido mais poderosa que possuímos, somos obrigados a aceitar a representação do nosso cérebro de informações visuais como a realidade fundamental.

Enquanto a nossa realidade visual fornece um quadro excelente para ciências físicas, é importante perceber que a própria realidade é um modelo com potenciais limitações e distorções físicas ou fisiológicas. A integração entre a fisiologia da percepção e da sua representação no cérebro foi comprovada recentemente em um experimento inteligente usando a ilusão tátil afunilamento [2]. A ilusão resulta em uma única sensação táctil no ponto focal no centro de um padrão de estímulo, embora nenhum estímulo é aplicado nesse sítio. No experimento, região de activação cerebral correspondeu ao ponto focal em que a sensação foi percebida, ao invés dos pontos onde foram aplicados os estímulos, provando a percepção de que o cérebro registrados, não as causas físicas da realidade percebida. Em outras palavras, para o cérebro, não há diferença entre a aplicação do padrão dos estímulos e da aplicação de apenas um estímulo com o centro do padrão. O cérebro mapeia os inputs sensoriais para regiões que correspondem a sua percepção, ao invés de nas regiões que correspondem ao fisiologicamente estímulos sensoriais.

Modalidade Sense: Causa Física: Sinal detectado: O modelo de cérebro:
Olfativo Chemicals As reações químicas Cheiros
Auditivo Vibrations Ondas de pressão Sounds
Visual Desconhecido Luz Espaço, tempo
realidade

Tabela I: Representação do cérebro de diferentes inputs sensoriais. Os odores são uma representação de composições químicas e concentração nossos sentidos nariz. Os sons são um mapeamento das ondas de pressão de ar produzidos por um objecto vibratório. Em vista, não sabemos a realidade física, nossa representação é o espaço, e possivelmente vez.

A localização neurológica de diferentes aspectos da realidade foi estabelecida em neurociência por estudos de lesões. A percepção do movimento (ea consequente base da nossa noção de tempo), por exemplo, é tão localizado que uma pequena lesão pode apagá-lo completamente. Casos de pacientes com tal perda específica de uma parte da realidade [1] ilustrar o fato de que nossa experiência da realidade, todos os seus aspectos, é de fato uma criação do cérebro. Espaço e tempo são aspectos da representação cognitiva em nosso cérebro.

O espaço é uma experiência perceptiva muito parecido com o som. As comparações entre os modos auditivas e visuais de detecção pode ser útil para entender as limitações de suas representações no cérebro. Uma limitação é as faixas de entrada dos órgãos sensoriais. Orelhas são sensíveis na faixa de freqüência de 20Hz-20kHz, e os olhos estão limitados ao espectro visível. Outra limitação, que podem existir em indivíduos específicos, é uma representação inadequada das entradas. Tal limitação pode levar a tone-surdez e cegueira de cores, por exemplo. A velocidade da modalidade sentido introduz também um efeito, tais como o intervalo de tempo entre ver um evento e ouvir o som correspondente. Para percepção visual, uma consequência da velocidade finita da luz é chamada a Light Travel Time (LTT) efeito. LLT oferece uma interpretação possível para o movimento superluminal observada em certos objetos celestes [3,4]: quando um objeto se aproxima do observador em um ângulo raso, ele pode aparecer para mover muito mais rápido do que a realidade [5] Devido à LTT.

Outras conseqüências dos efeitos LTT em nossa percepção são muito semelhantes para a transformação de coordenadas da teoria da relatividade especial (SRT). Estas consequências incluem uma contração aparente de um objeto se afastando ao longo de sua direção de movimento e um efeito de dilatação do tempo. Além disso, um objeto se afastando nunca pode aparecer estar indo mais rápido do que a velocidade da luz, mesmo que a sua velocidade real é superluminal. Enquanto SRT não explicitamente proíbem, superluminality é entendida como levar a viagem no tempo e as consequentes violações da causalidade. Um aparente violação da causalidade é uma das consequências da LTT, quando o objeto superluminal está se aproximando do observador. Todos estes efeitos LTT são muito semelhantes aos efeitos previstos pela SRT, e estão atualmente considerado «confirmação’ que o espaço-tempo obedece SRT. Mas, em vez, espaço de tempo pode ter uma estrutura mais profunda que, quando filtrada através de efeitos LTT, resultados em nosso percepção que o espaço-tempo obedece SRT.

Quando aceitamos o ponto de vista da neurociência da realidade como uma representação de nossas entradas sensoriais, podemos entender por que a velocidade de figuras de luz de forma tão proeminente em nossas teorias físicas. As teorias da física são uma descrição da realidade. A realidade é criada a partir das leituras dos nossos sentidos, especialmente os nossos olhos. Eles trabalham com a velocidade da luz. Assim, a santidade concedida à velocidade da luz é uma característica apenas de nossa realidade, não o absoluto, realidade última que os nossos sentidos estão se esforçando para perceber. Quando se trata de física que descreve fenômenos muito além das nossas gamas sensoriais, nós realmente temos que levar em conta o papel que a nossa percepção e cognição jogo em vê-los. O Universo como o vemos é apenas um modelo cognitivo criado a partir dos fótons que caem em nossa retina ou nos foto-sensores do telescópio Hubble. Por causa da velocidade finita do transportador de informações (os fótons), nossa percepção é distorcida de tal forma a dar-nos a impressão de que o espaço eo tempo obey SRT. Eles fazem, mas o espaço eo tempo não são a realidade absoluta. “Espaço e tempo são modos pelos quais pensamos e não condições nas quais vivemos,” como o próprio Einstein colocá-lo. Tratar a nossa realidade percebida como representação do nosso cérebro de nossos insumos visuais (filtrou-se através do efeito LTT), veremos que todos os estranhos efeitos da transformação de coordenadas em SRT pode ser entendido como as manifestações da velocidade finita de nossos sentidos em nosso espaço e tempo.

Além disso, vamos mostrar que esta linha de pensamento leva a explicações naturais para duas classes de fenômenos astrofísicos:

Gamma Ray Bursts, que são muito breve, mas flashes intensos de \gamma raios, Atualmente acredita-se que emanam de colapsos estelares cataclísmicos, e Rádio Fontes, que são tipicamente simétrica e parece associada com núcleos galácticos, manifestações actualmente consideradas de singularidades do espaço-tempo ou estrelas de nêutrons. Esses dois fenômenos astrofísicos aparecer distintos e sem relação, mas eles podem ser unificados e explicou o uso de efeitos LTT. Este artigo apresenta um modelo quantitativo tais unificada. Ele também irá mostrar que as limitações cognitivas para a realidade, devido aos efeitos LTT pode fornecer explicações qualitativas para tais características cosmológicas como a aparente expansão do Universo e da radiação cósmica de fundo (CMBR). Ambos os fenômenos pode ser entendido como relacionado com a nossa percepção de objetos superluminais. É a unificação desses fenômenos aparentemente distintas em muito diferentes escalas de comprimento e tempo, juntamente com a sua simplicidade conceitual, que temos como os indicadores de validade deste quadro.

2. Semelhanças entre Efeitos LTT & SRT

A transformação de coordenadas derivado em papel original de Einstein [6] é, em parte, uma manifestação dos efeitos LTT e por consequência a imposição a constância da velocidade da luz em todos os referenciais inerciais. Isso é mais evidente no primeiro experimento de pensamento, onde os observadores se deslocam com uma haste de encontrar os seus relógios não sincronizado, devido à diferença no LTT do ao longo do comprimento da haste. Contudo, na interpretação atual da SRT, a transformação de coordenadas é considerado uma propriedade básica de espaço e tempo. Uma dificuldade que surge a partir desta formulação é que a definição da velocidade relativa entre os dois quadros de inércia torna-se ambígua. Se for a velocidade da trama em movimento, conforme medido pelo observador, em seguida, o movimento superluminal observado em jatos de rádio a partir da região do núcleo torna-se uma violação da SRT. Se for uma velocidade que temos a considerar os efeitos de deduzir LTT, então temos que empregar o adicional ad hoc pressuposto que superluminality é proibido. Essas dificuldades sugerem que pode ser melhor para separar os efeitos LTT do resto do SRT. Apesar de não ser tentada neste trabalho, a principal motivação para SRT, ou seja, a covariância das equações de Maxwell, pode ser conseguido mesmo sem atribuir efeitos LTT para as propriedades de espaço e tempo.

Nesta Seção, vamos considerar espaço e tempo como uma parte do modelo cognitivo criado pelo cérebro, e ilustrar que SRT se aplica ao modelo cognitivo. A realidade absoluta (de que o SRT-como o espaço-tempo é a nossa percepção) não tem de obedecer às restrições da SRT. Em particular, objectos não são restritas a velocidades subluminal, embora possam aparecer para nós como se eles estão restritos a velocidades subluminal em nossa percepção do espaço e do tempo. Se separar os efeitos LTT do resto da SRT, podemos compreender uma grande variedade de fenômenos, como mostrado neste artigo.

SRT visa coordenar uma transformação linear entre sistemas de coordenadas em movimento em relação ao outro. Podemos traçar a origem da linearidade de um pressuposto oculto sobre a natureza do espaço e do tempo construída em SRT, como afirmou Einstein [6]: “Em primeiro lugar, é evidente que as equações deve ser linear, em virtude das propriedades de homogeneidade que atribuímos a espaço e tempo.” Devido a essa suposição de linearidade, a derivação original das equações de transformação ignora a assimetria entre aproximando e se afastando objetos e concentra-se em objetos de recuo. Tanto a aproximação e recuo objectos pode ser descrito por dois sistemas que são sempre de recuo de cada outra coordenada. Por exemplo, se um sistema K está em movimento em relação a um outro sistema a ao longo do eixo X positivo de a, em seguida, um objeto em repouso K a uma positiva x está se aproximando de um observador na origem da a. Ao contrário SRT, considerações baseadas em efeitos LTT resultar em conjunto intrinsecamente diferente de leis de transformação para objetos que se aproximam um observador e os afastando dele. Mais geralmente, a transformação depende do ângulo entre a velocidade do objecto e a linha de visão do observador. Uma vez que as equações de transformação com base em efeitos LTT tratar aproximando e se afastando objetos assimetricamente, eles fornecem uma solução natural para o paradoxo dos gêmeos, por exemplo.

2.1 Primeira Ordem da Percepção Effects

Para se aproximando e se afastando objetos, os efeitos relativísticos são de segunda ordem na velocidade \beta, e velocidade tipicamente aparece como \sqrt{1-\beta^2}. Os efeitos LTT, por outro lado, são de primeira ordem na velocidade. Os primeiros efeitos de ordem têm sido estudados nos últimos cinquenta anos, em termos da aparência de um corpo estendido relativisticamente movendo [7-15]. Também tem sido sugerido que o efeito Doppler relativista pode ser considerada a média geométrica [16] cálculos de mais básicas. A crença atual é de que os primeiros efeitos de ordem são uma ilusão de ótica de ser retirado de nossa percepção da realidade. Uma vez que estes efeitos são levados para fora ou "deconvolved’ das observações, o 'real’ espaço e tempo são assumidos para obedecer SRT. Note-se que esta hipótese é impossível verificar porque o deconvolution é um problema mal colocado – existem múltiplas soluções para a realidade absoluta de que todos resultam na mesma imagem perceptual. Nem todas as soluções obedecer SRT.

A noção de que é a realidade absoluta que obedece arrumadores SRT em um problema mais profundo filosófica. Esta noção é equivalente a insistir em que espaço e tempo são na verdade 'intuições’ além da percepção sensorial, em vez de uma imagem cognitivo criado pelo nosso cérebro para fora das entradas sensoriais que recebe. Uma crítica formal das intuições kantianas de espaço e tempo está além do escopo deste artigo. Aqui, tomamos a posição de que é nossa realidade observada ou percebido que obedece SRT e explorar onde ela nos leva. Em outras palavras, supomos que SRT não é senão uma formalização dos efeitos perceptivos. Estes efeitos não são de primeira ordem na velocidade quando o objeto não está se aproximando diretamente (ou se afastando de) o observador, como veremos mais tarde. Vamos mostrar neste artigo que um tratamento de SRT como um efeito perceptivo nos dará solução natural para os fenômenos astrofísicos como explosões de raios gama e jatos de rádio simétricas.

2.2 Perception of Speed

Nós primeiro olhar para a forma como a percepção do movimento é modulada por efeitos LTT. Como observado anteriormente, as equações de transformação de SRT deleite apenas objetos se afastando do observador. Por esta razão, primeiro consideramos um objeto recuando, voando para longe do observador a uma velocidade \beta do objecto depende da velocidade real b (conforme indicado no apêndice A.1):


\beta_O ,=, \frac{\beta}{1,+,\beta} & Nbsp; & Nbsp; & Nbsp; & nbsp; & Nbsp; & Nbsp; (1)
\lim_{\beta\to\infty} \beta_O ,=, 1& Nbsp; & Nbsp; & Nbsp; & nbsp; & Nbsp; & Nbsp; (2)

Assim, devido aos efeitos LTT, uma velocidade verdadeira infinito é mapeado para uma velocidade aparente \beta_O=1. Em outras palavras, nenhum objeto pode aparecer viajar mais rápido que a velocidade da luz, inteiramente consistente com SRT.

Fisicamente, este limite de velocidade aparente equivale a um mapeamento de c para \infty. Este mapeamento é mais evidente em suas conseqüências. Por exemplo, é preciso uma quantidade infinita de energia para acelerar um objeto a uma velocidade aparente \beta_O=1 porque, na realidade, estamos acelerando-o a uma velocidade infinita. Este requisito energia infinita também pode ser visto como a massa relativista mudar a uma velocidade, atingindo \infty em \beta_O=1. Einstein explicou este mapeamento como: “Para velocidades maiores que a da luz nossas deliberações se tornam sem sentido; iremos, no entanto, encontrar no que se segue, que a velocidade da luz na nossa teoria desempenha o papel, fisicamente, de um infinitamente grande velocidade.” Assim, para objetos recuo do observador, os efeitos da LTT são quase idênticas às consequências da SRT, em termos da percepção da velocidade.

2.3 Dilatação do tempo
Dilatação do tempo
Figure 1
Figura 1:. Comparação entre o tempo de viagem de luz (LTT) efeitos e as previsões da teoria da relatividade especial (SR). O eixo X representa a velocidade aparente e o eixo Y mostra a dilatação do tempo ou o comprimento contracção relativa.

Efeitos LTT influenciar a forma como o tempo na objeto em movimento é percebido. Imagine um objeto se afastando do observador a uma taxa constante. Como ele se move para longe, os fótons sucessivos emitidos pelo objeto demorar mais tempo e mais tempo para atingir o observador, porque eles são emitidos em cada vez mais longe. Este atraso tempo de viagem dá ao observador a ilusão de que o tempo está fluindo mais lento para o objeto em movimento. Ele pode ser facilmente demonstrado (ver apêndice A.2) que o intervalo de tempo observado \Delta t_O está relacionada com o intervalo de tempo real \Delta t como:


  \frac{\Delta t_O}{\Delta t} ,=, \frac{1}{1-\beta_O}& Nbsp; & Nbsp; & Nbsp; & nbsp; & Nbsp; & Nbsp;(3)

para um objeto se afastando do observador (\theta=\pi). Esta dilatação do tempo observado é representada na figura. 1, onde ele é comparado com a dilatação do tempo previsto no SR. Note-se que a dilatação do tempo devido à LTT tem uma grandeza maior do que o previsto no SR. Contudo, a variação é semelhante, com ambas as dilatações de tempo tende a \infty como a velocidade observada tende a c.

2.4 Comprimento Contração

O comprimento de um objecto em movimento também aparece diferente devido a efeitos LTT. Pode ser mostrado (ver apêndice A.3) observado que o comprimento d_O como:


\frac{d_O}{d} ,=, {1-\beta_O}& Nbsp; & Nbsp; & Nbsp; & Nbsp; & Nbsp; & Nbsp;(4)

para um objeto se afastando do observador com uma velocidade aparente de \beta_O. Esta equação está representada também na Fig. 1. Note novamente que os efeitos LTT são mais fortes que os preditos em SRT.

Figo. 1 ilustra que tanto a dilatação e contracção de Lorentz tempo pode ser pensado como efeitos LTT. Enquanto as grandezas efectivas dos efeitos LTT são maiores do que o que prediz SRT, sua dependência qualitativa sobre velocidade é quase idêntico. Esta semelhança não é surpreendente, porque a transformação de coordenadas no SRT é parcialmente baseado em efeitos LTT. Se os efeitos LTT devem ser aplicadas, como uma ilusão de ótica, no topo das consequências da SRT como atualmente se acredita, em seguida, a contração do comprimento total observada e dilatação do tempo será significativamente mais do que as previsões SRT.

2.5 Deslocamento Doppler
O resto do artigo (as secções até Conclusões) foi abreviada e pode ser lido na versão PDF.
()

5 Conclusões

Neste artigo, começamos com uma visão de neurociência cognitiva sobre a natureza da realidade. A realidade é uma representação conveniente que o nosso cérebro cria fora de nossas entradas sensoriais. Esta representação, embora conveniente, é um mapeamento experiencial incrivelmente distante das causas físicas reais que compõem as entradas para os nossos sentidos. Além disso, limitações na cadeia de detecção e percepção mapa para manifestações mensuráveis ​​e previsíveis para a realidade que percebemos. Uma tal restrição fundamental para a nossa realidade percebida é a velocidade da luz, e as manifestações correspondentes, Efeitos LTT. Como o espaço eo tempo são uma parte de uma realidade criada a partir de insumos de luz para os nossos olhos, algumas das suas propriedades são manifestações de efeitos LTT, especialmente na nossa percepção do movimento. O absoluto, realidade física gerar as entradas de luz não obedece as propriedades que atribuímos ao nosso espaço e tempo percebido. Nós mostramos que os efeitos LTT são qualitativamente idênticos aos do TSA, observando que SRT considera apenas quadros de referência recuando um do outro. Esta semelhança não é surpreendente, porque a transformação de coordenadas no SRT é derivado com base, em parte, os efeitos LTT, e, em parte, na hipótese de que a luz viaja à mesma velocidade com que diz respeito a todos os inerciais. Em tratando-o como uma manifestação de LTT, nós não abordou a principal motivação da SRT, que é uma formulação covariante das equações de Maxwell, como evidenciado pelas declarações de papel original de Einstein abertura [6]. Pode ser possível separar a covariância da eletrodinâmica a partir da transformação de coordenadas, embora não seja experimentada com este artigo.

Ao contrário SRT, Efeitos LTT são assimétricas. Esta assimetria fornece uma solução para o paradoxo dos gêmeos e uma interpretação das violações de causalidade assumidas associado com superluminality. Além disso, a percepção de superluminality é modulada por efeitos LTT, e explica g explosões de raios e jatos simétricos. Como mostramos no artigo, percepção do movimento superluminal também tem uma explicação para os fenômenos cosmológicos, como a expansão do Universo e da radiação cósmica de fundo em microondas. Efeitos LTT deve ser considerada como uma restrição fundamental em nossa percepção, e, consequentemente, na física, ao invés de uma explicação conveniente para fenômenos isolados. Tendo em conta que a nossa percepção é filtrada através de efeitos LTT, temos que deconvolute-los de nossa realidade percebida, a fim de compreender a natureza do absoluto, realidade física. Este deconvolution, no entanto, resulta em várias soluções. Assim, o absoluto, realidade física está além do nosso alcance, e qualquer suposto propriedades da realidade absoluta só pode ser validada através de quão bem a resultante percebido realidade está de acordo com nossas observações. Neste artigo, assumiu-se que o absoluto realidade obedece nossos mecânica clássica intuitivamente óbvio e fez a pergunta como essa realidade seria percebido quando filtrada através de efeitos LTT. Nós demonstramos que este tratamento especial poderia explicar certos fenômenos astrofísicos e cosmológicos que observamos. A distinção entre as diferentes noções de velocidade, incluindo a velocidade adequada e a velocidade de Einstein, foi objeto de uma edição recente da revista [33].

A transformação de coordenadas no SRT deve ser visto como uma redefinição do espaço e do tempo (ou, mais geralmente, realidade) a fim de acomodar as distorções em nossa percepção do movimento, devido aos efeitos LTT. A realidade absoluta por trás da nossa percepção não é sujeito a restrições de SRT. Pode-se ser tentado a argumentar que SRT se aplica ao 'real’ espaço e tempo, não a nossa percepção. Essa linha de argumentação levanta a questão, o que é real? A realidade é nada além de um modelo cognitivo criado em nosso cérebro a partir de nossas entradas sensoriais, inputs visual que é o mais importante. O próprio espaço é uma parte deste modelo cognitivo. As propriedades do espaço são um mapeamento dos limites da nossa percepção. Nós não temos acesso a uma realidade além de nossa percepção. A escolha de aceitar a nossa percepção como uma verdadeira imagem da realidade e redefinindo o espaço eo tempo, conforme descrito no SRT de fato equivale a uma escolha filosófica. A alternativa apresentada no artigo é solicitado pela visão da neurociência moderna que a realidade é um modelo cognitivo no cérebro com base em nossas informações sensoriais. Adotando essa alternativa nos reduz a adivinhar a natureza da realidade absoluta e comparando sua projeção previsto para nossa percepção real. Pode simplificar e explicar algumas teorias da física e explicar alguns fenômenos intrigantes no nosso Universo. Contudo, esta opção é mais uma postura filosófica contra a realidade absoluta incognoscível.

Referências

[1] V.S. Ramachandran, “The Mind Emergentes: Reith Lectures on Neuroscience” (BBC, 2003).
[2] L.M. Chen, R.M.. Friedman, e A. O. Ova, Ciência 302, 881 (2003).
[3] J.A. Barrete de padre, W.B. Faíscas, e F. Macchetto, APJ 520, 621 (1999).
[4] A.J. Censo, EMPRESA&A 35, 607 (1997).
[5] M. Rees, Natureza 211, 468 (1966).
[6] A. Einstein, Annals of Physics 17, 891 (1905).
[7 ] R. Weinstein, No. J. Phys. 28, 607 (1960).
[8 ] M.L. Boas, No. J. Phys. 29, 283 (1961).
[9 ] S. Yngström, Archive for Physics 23, 367 (1962).
[10] G.D. Scott e M.R. Vinhos, No. J. Phys. 33, 534 (1965).
[11] N.C. McGill, Contemp. Phys. 9, 33 (1968).
[12] R.Bhandari, No. J. Phys 38, 1200 (1970).
[13] G.D. Scott e H.J. van Driel, No. J. Phys. 38, 971 (1970).
[14] P.m. Mathews e M. Lakshmanan, Nuovo Cimento 12, 168 (1972).
[15] J. Terrell, No. J. Phys. 57, 9 (1989).
[16] T. M. Kalotas e A.M. Sotavento, No. J. Phys. 58, 187 (1990).
[17] Frequência intermédia. Mirabel e L.F. Rodríguez, Natureza 371, 46 (1994).
[18] Frequência intermédia. Mirabel e L.F. Rodríguez, EMPRESA&A 37, 409 (1999).
[19] G. Reféns, Natureza 371, 18 (1994).
[20] R.P. Pára-lama, S.T.. Garrington, D. J. McKay, T. O. B. Muxlow, G. G. Pooley, R. E. Spencer, A. M. Stirling, e E.B. Waltman, MNRAS 304, 865 (1999).
[21] R. A. Perley, J.W.. Torneiro, e J. J. Cowan, APJ 285, L35 (1984).
[22] I. Owsianik e J.E.. Conway, A&A 337, 69 (1998).
[23] A.G.. Polatidis, J.E. Conway, e I.Owsianik, em Proc. 6th Europeia VLBI Rede Simpósio, editada por Ros, Porcas, Lobanov, Censo (2002).
[24] M. Thulasidas, O efeito perceptual (Devido à LTT) de um objeto superluminal aparecendo como dois objetos é melhor ilustrado com uma animação, que podem ser encontradas no site do autor: http://www.TheUnrealUniverse.com/anim.html
[25] S. Bobo, H.J. Roeser, K.Meisenheimer, e R.Perley, A&A 431, 477 (2005), astro-ph / 0410520.
[26] T. Piran, International Journal of Modern Physics A 17, 2727 (2002).
[27] E.P. Mazets, S.V. Golenetskii, V.N. Ilyinskii, E. A. Guryan, e R. O. Aptekar, Ap&SS 82, 261 (1982).
[28] T. Piran, Phys.Rept. 314, 575 (1999).
[29] F. Ryde, APJ 614, 827 (2005).
[30] F. Ryde, , e R. Svensson, APJ 566, 210 (2003).
[31] G. GHISELLINI, J.Mod.Phys.A (Proc. 19th Europeia Cosmic Ray Simpósio – ECRS 2004) (2004), astro-ph / 0411106.
[32] F. E R Ryde. Svensson, APJ 529, L13 (2000).
[33] C. Whitney, Galileus Eletrodinâmica, Edições especiais 3, Ensaios do Editor, Inverno 2005.

The Philosophy of Special Relativity — A Comparison between Indian and Western Interpretations

Abstrato: The Western philosophical phenomenalism could be treated as a kind of philosophical basis of the special theory of relativity. The perceptual limitations of our senses hold the key to the understanding of relativistic postulates. The specialness of the speed of light in our phenomenal space and time is more a matter of our perceptual apparatus, than an input postulate to the special theory of relativity. The author believes that the parallels among the phenomenological, Western spiritual and the Eastern Advaita interpretations of special relativity point to an exciting possibility of unifying the Eastern and Western schools of thought to some extent.

– Editor

Key Words: Relativity, Speed of Light, Phenomenalism, Advaita.

Introdução

The philosophical basis of the special theory of relativity can be interpreted in terms of Western phenomenalism, which views space and time are considered perceptual and cognitive constructs created out our sensory inputs. A partir desta perspectiva, the special status of light and its speed can be understood through a phenomenological study of our senses and the perceptual limitations to our phenomenal notions of space and time. A similar view is echoed in the BrahmanMaya distinção em Advaita. If we think of space and time as part of Maya, we can partly understand the importance that the speed of light in our reality, as enshrined in special relativity. The central role of light in our reality is highlighted in the Bible as well. These remarkable parallels among the phenomenological, Western spiritual and the Advaita interpretations of special relativity point to an exciting possibility of unifying the Eastern and Western schools of thought to a certain degree.

Special Relativity

Einstein unveiled his special theory of relativity2 a little over a century ago. In his theory, he showed that space and time were not absolute entities. They are entities relative to an observer. An observer’s space and time are related to those of another through the speed of light. Por exemplo, nothing can travel faster than the speed of light. In a moving system, time flows slower and space contracts in accordance with equations involving the speed of light. Luz, portanto,, enjoys a special status in our space and time. This specialness of light in our reality is indelibly enshrined in the special theory of relativity.

Where does this specialness come from? What is so special about light that its speed should figure in the basic structure of space and time and our reality? This question has remained unanswered for over 100 anos. It also brings in the metaphysical aspects of space and time, which form the basis of what we perceive as reality.

Noumenal-Phenomenal and BrahmanMaya Distinctions

No Advaita3 view of reality, what we perceive is merely an illusion-Maya. Advaita explicitly renounces the notion that the perceived reality is external or indeed real. It teaches us that the phenomenal universe, our conscious awareness of it, and our bodily being are all an illusion or Maya. They are not the true, absolute reality. The absolute reality existing in itself, independent of us and our experiences, é Brahman.

A similar view of reality is echoed in phenomenalism,4 which holds that space and time are not objective realities. Eles são apenas o meio de nossa percepção. Neste ponto de vista, all the phenomena that happen in space and time are merely bundles of our perception. Space and time are also cognitive constructs arising from perception. Assim, the reasons behind all the physical properties that we ascribe to space and time have to be sought in the sensory processes that create our perception, whether we approach the issue from the Advaita or phenomenalism perspective.

This analysis of the importance of light in our reality naturally brings in the metaphysical aspects of space and time. In Kant’s view,5 space and time are pure forms of intuition. They do not arise from our experience because our experiences presuppose the existence of space and time. Assim, we can represent space and time in the absence of objects, but we cannot represent objects in the absence of space and time.

Kant’s middle-ground has the advantage of reconciling the views of Newton and Leibniz. It can agree with Newton’s view6 that space is absolute and real for phenomenal objects open to scientific investigation. It can also sit well with Leibniz’s view7 that space is not absolute and has an existence only in relation to objects, by highlighting their relational nature, not among objects in themselves (noumenal objects), but between observers and objects.

We can roughly equate the noumenal objects to forms in Brahman and our perception of them to Maya. Neste artigo, we will use the terms “noumenal reality,” “absolute reality,” ou “realidade física” interchangeably to describe the collection of noumenal objects, their properties and interactions, which are thought to be the underlying causes of our perception. Da mesma forma, we will “phenomenal reality,” “perceived or sensed reality,” e “perceptual reality” to signify our reality as we perceive it.

As with Brahman causing Maya, we assume that the phenomenal notions of space and time arise from noumenal causes8 through our sensory and cognitive processes. Note that this causality assumption is ad-hoc; there is no a priori reason for phenomenal reality to have a cause, nor is causation a necessary feature of the noumenal reality. Despite this difficulty, we proceed from a naive model for the noumenal reality and show that, through the process of perception, we can “derive” a phenomenal reality that obeys the special theory of relativity.

This attempt to go from the phenomena (espaço e tempo) to the essence of what we experience (a model for noumenal reality) is roughly in line with Husserl’s transcendental phenomenology.9 The deviation is that we are more interested in the manifestations of the model in the phenomenal reality itself rather than the validity of the model for the essence. Through this study, we show that the specialness of the speed of light in our phenomenal space and time is a consequence of our perceptual apparatus. It doesn’t have to be an input postulate to the special theory of relativity.

Perception and Phenomenal Reality

The properties we ascribe to space and time (such as the specialness of the speed of light) can only be a part of our perceived reality or Maya, em Advaita, not of the underlying absolute reality, Brahman. If we think of space and time as aspects of our perceived reality arising from an unknowable Brahman through our sensory and cognitive processes, we can find an explanation for the special distinction of the speed of light in the process and mechanism of our sensing. Our thesis is that the reason for the specialness of light in our phenomenal notions of space and time is hidden in the process of our perception.

Nós, portanto,, study how the noumenal objects around us generate our sensory signals, and how we construct our phenomenal reality out of these signals in our brains. The first part is already troublesome because noumenal objects, por definição, have no properties or interactions that we can study or understand.

These features of the noumenal reality are identical to the notion of Brahman em Advaita, which highlights that the ultimate truth is Brahman, the one beyond time, space and causation. Brahman is the material cause of the universe, but it transcends the cosmos. It transcends time; it exists in the past, present and future. It transcends space; it has no beginning, middle and end. It even transcends causality. For that reason, Brahman is incomprehensible to the human mind. The way it manifests to us is through our sensory and cognitive processes. This manifestation is Maya, the illusion, que, in the phenomenalistic parlance, corresponds to the phenomenal reality.

For our purpose in this article, we describe our sensory and cognitive process and the creation of the phenomenal reality or Maya10 as follows. It starts with the noumenal objects (or forms in Brahman), which generate the inputs to our senses. Our senses then process the signals and relay the processed electric data corresponding to them to our brain. The brain creates a cognitive model, a representation of the sensory inputs, and presents it to our conscious awareness as reality, which is our phenomenal world or Maya.

This description of how the phenomenal reality created ushers in a tricky philosophical question. Who or what creates the phenomenal reality and where? It is not created by our senses, brain and mind because these are all objects or forms in the phenomenal reality. The phenomenal reality cannot create itself. It cannot be that the noumenal reality creates the phenomenal reality because, in that case, it would be inaccurate to assert the cognitive inaccessibility to the noumenal world.

This philosophical trouble is identical in Advaita também. Our senses, brain and mind cannot create Maya, because they are all part of Maya. Se Brahman created Maya, it would have to be just as real. This philosophical quandary can be circumvented in the following way. We assume that all events and objects in Maya have a cause or form in Brahman or in the noumenal world. Assim, we postulate that our senses, mind and body all have some (unknown) forms in Brahman (or in the noumenal world), and these forms create Maya in our conscious awareness, ignoring the fact that our consciousness itself is an illusory manifestation in the phenomenal world. This inconsistency is not material to our exploration into the nature of space and time because we are seeking the reason for the specialness of light in the sensory process rather than at the level of consciousness.

Space and time together form what physics considers the basis of reality. Space makes up our visual reality precisely as sounds make up our auditory world. Just as sounds are a perceptual experience rather than a fundamental property of physical reality, space also is an experience, or a cognitive representation of the visual inputs, not a fundamental aspect of Brahman or the noumenal reality. The phenomenal reality thus created is Maya. O Maya events are an imperfect or distorted representation of the corresponding Brahman events. Desde Brahman is a superset of Maya (ou, equivalently, our senses are potentially incapable of sensing all aspects of the noumenal reality), not all objects and events in Brahman create a projection in Maya. Our perception (ou Maya) is thus limited because of the sense modality and its speed, which form the focus of our investigation in this article.

In summary, it can be argued that the noumenal-phenomenal distinction in phenomenalism is an exact parallel to the BrahmanMaya distinção em Advaita if we think of our perceived reality (ou Maya) as arising from sensory and cognitive processes.

Sensing Space and Time, and the Role of Light

The phenomenal notions of space and time together form what physics considers the basis of reality. Since we take the position that space and time are the end results of our sensory perception, we can understand some of the limitations in our Maya by studying the limitations in our senses themselves.

At a fundamental level, how do our senses work? Our sense of sight operates using light, and the fundamental interaction involved in sight falls in the electromagnetic (EM) category because light (or photon) is the intermediary of EM interactions.11

The exclusivity of EM interaction is not limited to our long-range sense of sight; all the short-range senses (touch, taste, smell and hearing) are also EM in nature. In physics, the fundamental interactions are modeled as fields with gauge bosons.12 In quantum electrodynamics13 (the quantum field theory of EM interactions), photon (or light) is the gauge boson mediating EM interactions. Electromagnetic interactions are responsible for all our sensory inputs. To understand the limitations of our perception of space, we need not highlight the EM nature of all our senses. Space is, de um modo geral, the result of our sight sense. But it is worthwhile to keep in mind that we would have no sensing, and indeed no reality, in the absence of EM interactions.

Like our senses, all our technological extensions to our senses (such as radio telescopes, electron microscopes, red shift measurements and even gravitational lensing) use EM interactions exclusively to measure our universe. Assim, we cannot escape the basic constraints of our perception even when we use modern instruments. The Hubble telescope may see a billion light years farther than our naked eyes, mas o que se vê ainda é um bilhão de anos mais velho do que o que os nossos olhos vêem. Our phenomenal reality, whether built upon direct sensory inputs or technologically enhanced, is made up of a subset of EM particles and interactions only. What we perceive as reality is a subset of forms and events in the noumenal world corresponding to EM interactions, filtered through our sensory and cognitive processes. No Advaita parlance, Maya can be thought of as a projection of Brahman through EM interactions into our sensory and cognitive space, quite probably an imperfect projection.

The exclusivity of EM interactions in our perceived reality is not always appreciated, mainly because of a misconception that we can sense gravity directly. This confusion arises because our bodies are subject to gravity. There is a fine distinction betweenbeing subject to” e “being able to sensegravitational force. The gravity sensing in our ears measures the effect of gravity on EM matter. In the absence of EM interaction, it is impossible to sense gravity, or anything else for that matter.

This assertion that there is no sensing in the absence of EM interactions brings us to the next philosophical hurdle. One can always argue that, in the absence of EM interaction, there is no matter to sense. This argument is tantamount to insisting that the noumenal world consists of only those forms and events that give rise to EM interaction in our phenomenal perception. Em outras palavras, it is the same as insisting that Brahman is made up of only EM interactions. What is lacking in the absence of EM interaction is only our phenomenal reality. No Advaita notion, in the absence of sensing, Maya does not exist. The absolute reality or Brahman, no entanto, is independent of our sensing it. Mais uma vez, we see that the Eastern and Western views on reality we explored in this article are remarkably similar.

The Speed of Light

Knowing that our space-time is a representation of the light waves our eyes receive, we can immediately see that light is indeed special in our reality. In our view, sensory perception leads to our brain’s representation that we call reality, ou Maya. Any limitation in this chain of sensing leads to a corresponding limitation in our phenomenal reality.

One limitation in the chain from senses to perception is the finite speed of photon, which is the gauge boson of our senses. The finite speed of the sense modality influences and distorts our perception of motion, espaço e tempo. Because these distortions are perceived as a part of our reality itself, the root cause of the distortion becomes a fundamental property of our reality. This is how the speed of light becomes such an important constant in our space-time.

The importance of the speed of light, no entanto, is respected only in our phenomenal Maya. Other modes of perception have other speeds the figure as the fundamental constant in their space-like perception. The reality sensed through echolocation, por exemplo, has the speed of sound as a fundamental property. De fato, it is fairly simple to establish14 that echolocation results in a perception of motion that obeys something very similar to special relativity with the speed of light replaced with that of sound.

Theories beyond Sensory Limits

The basis of physics is the world view called scientific realism, which is not only at the core of sciences but is our natural way of looking at the world as well. Scientific realism, and hence physics, assume an independently existing external world, whose structures are knowable through scientific investigations. To the extent observations are based on perception, the philosophical stance of scientific realism, as it is practiced today, can be thought of as a trust in our perceived reality, and as an assumption that it is this reality that needs to be explored in science.

Physics extends its reach beyond perception or Maya through the rational element of pure theory. Most of physics works in thisextendedintellectual reality, with concepts such as fields, forces, light rays, átomos, partículas, etc, the existence of which is insisted upon through the metaphysical commitment implied in scientific realism. Contudo, it does not claim that the rational extensions are the noumenal causes or Brahman giving raise to our phenomenal perception.

Scientific realism has helped physics tremendously, with all its classical theories. Contudo, scientific realism and the trust in our perception of reality should apply only within the useful ranges of our senses. Within the ranges of our sensory perceptions, we have fairly intuitive physics. An example of an intuitive picture is Newtonian mechanics that describe “normal” objects moving around at “normal” speeds.

When we get closer to the edges of our sensory modalities, we have to modify our sciences to describe the reality as we sense it. These modifications lead to different, and possibly incompatible, theories. When we ascribe the natural limitations of our senses and the consequent limitations of our perception (and therefore observations) to the fundamental nature of reality itself, we end up introducing complications in our physical laws. Depending on which limitations we are incorporating into the theory (e.g., small size, large speeds etc.), we may end up with theories that are incompatible with each other.

Our argument is that some of these complications (e, esperançosamente, incompatibilities) can be avoided if we address the sensory limitations directly. Por exemplo, we can study the consequence of the fact that our senses operate at the speed of light as follows. We can model Brahman (the noumenal reality) as obeying classical mechanics, and work out what kind of Maya (phenomenal reality) we will experience through the chain of sensing.

The modeling of the noumenal world (as obeying classical mechanics), claro, has shaky philosophical foundations. But the phenomenal reality predicted from this model is remarkably close to the reality we do perceive. Starting from this simple model, it can be easily shown our perception of motion at high speeds obeys special relativity.

The effects due to the finite speed of light are well known in physics. Sabemos, por exemplo, that what we see happening in distant stars and galaxies now actually took place quite awhile ago. A moreadvancedeffect due to the light travel time15 is the way we perceive motion at high speeds, which is the basis of special relativity. De fato, many astrophysical phenomena can be understood16 in terms of light travel time effects. Because our sense modality is based on light, our sensed picture of motion has the speed of light appearing naturally in the equations describing it. So the importance of the speed of light in our space-time (as described in special relativity) is due to the fact that our reality is Maya created based on light inputs.

Conclusion

Almost all branches of philosophy grapple with this distinction between the phenomenal and the absolute realities to some extent. Advaita Vedanta holds the unrealness of the phenomenal reality as the basis of their world view. Neste artigo, we showed that the views in phenomenalism can be thought of as a restatement of the Advaita postulates.

When such a spiritual or philosophical insight makes its way into science, great advances in our understanding can be expected. This convergence of philosophy (or even spirituality) and science is beginning to take place, most notably in neuroscience, which views reality as a creation of our brain, echoing the notion of Maya.

Science gives a false impression that we can get arbitrarily close to the underlying physical causes through the process of scientific investigation and rational theorization. An example of such theorization can be found in our sensation of hearing. The experience or the sensation of sound is an incredibly distant representation of the physical causenamely air pressure waves. We are aware of the physical cause because we have a more powerful sight sense. So it would seem that we can indeed go from Maya (som) to the underlying causes (air pressure waves).

Contudo, it is a fallacy to assume that the physical cause (the air pressure waves) é Brahman. Air pressure waves are still a part of our perception; they are part of the intellectual picture we have come to accept. This intellectual picture is an extension of our visual reality, based on our trust in the visual reality. It is still a part of Maya.

The new extension of reality proposed in this article, again an intellectual extension, is an educated guess. We guess a model for the absolute reality, ou Brahman, and predict what the consequent perceived reality should be, working forward through the chain of sensing and creating Maya. If the predicted perception is a good match with the Maya we do experience, then the guesswork for Brahman is taken to be a fairly accurate working model. The consistency between the predicted perception and what we do perceive is the only validation of the model for the nature of the absolute reality. Além disso, the guess is only one plausible model for the absolute reality; there may be different suchsolutionsto the absolute reality all of which end up giving us our perceived reality.

It is a mistake to think of the qualities of our subjective experience of sound as the properties of the underlying physical process. In an exact parallel, it is a fallacy to assume that the subjective experience of space and time is the fundamental property of the world we live in. The space-time continuum, as we see it or feel it, is only a partial and incomplete representation of the unknowable Brahman. If we are willing to model the unknowable Brahman as obeying classical mechanics, we can indeed derive the properties of our perceived reality (such as time dilation, length contraction, light speed ceiling and so on in special relativity). By proposing this model for the noumenal world, we are not suggesting that all the effects of special relativity are mere perceptual artifacts. We are merely reiterating a known fact that space and time themselves cannot be anything but perceptual constructs. Thus their properties are manifestations of the process of perception.

When we consider processes close to or beyond our sensor limits, the manifestations of our perceptual and cognitive constraints become significant. Portanto, when it comes to the physics that describes such processes, we really have to take into account the role that our perception and cognition play in sensing them. The universe as we see it is only a cognitive model created out of the photons falling on our retina or on the photosensors of the Hubble telescope. Por causa da velocidade finita do transportador de informações (namely light), our perception is distorted in such a way as to give us the impression that space and time obey special relativity. Eles fazem, but space and time are only a part of our perception of an unknowable realitya perception limited by the speed of light.

The central role of light in creating our reality or universe is at the heart of western spiritual philosophy as well. Um universo desprovido de luz não é simplesmente um mundo onde você apagou as luzes. Na verdade, é um universo desprovido de si, um universo que não existe. It is in this context that we have to understand the wisdom behind the notion that “a terra era sem forma, and void'” até que Deus fez a luz para ser, dizendo “Haja luz.” Quran also says, “Allah is the light of the heavens.The role of light in taking us from the void (o nada) to a reality was understood for a long, há muito tempo. Is it possible that the ancient saints and prophets knew things that we are only now beginning to uncover with all our advances in knowledge? Whether we use old Eastern Advaita views or their Western counterparts, we can interpret the philosophical stance behind special relativity as hidden in the distinction between our phenomenal reality and its unknowable physical causes.

Referências

  1. Dr. Manoj Thulasidas graduated from the Indian Institute of Technology (IIT), Madras, em 1987. He studied fundamental particles and interactions at the CLEO collaboration at Cornell University during 1990-1992. After receiving his PhD in 1993, he moved to Marseilles, France and continued his research with the ALEPH collaboration at CERN, Genebra. During his ten-year career as a research scientist in the field of High energy physics, foi co-autor de mais de 200 publicações.
  2. Einstein, A. (1905). Zur Elektrodynamik bewegter Körper. (On The Electrodynamics Of Moving Bodies). Annals of Physics, 17, 891-921.
  3. Radhakrishnan, S. & Moore, C. A. (1957). Source Book in Indian Philosophy. Princeton University Press, Princeton, Nova Iorque.
  4. Chisolm, R. (1948). The Problem of Empiricism. The Journal of Philosophy, 45, 512-517.
  5. Allison, H. (2004). Kant’s Transcendental Idealism. Yale University Press.
  6. Rynasiewicz, R. (1995). By Their Properties, Causes and Effects: Newton’s Scholium on Time, Espaço, Place and Motion. Studies in History and Philosophy of Science, 26, 133-153, 295-321.
  7. Calkins, M. O. (1897). Kant’s Conception of the Leibniz Space and Time Doctrine. The Philosophical Review, 6 (4), 356-369.
  8. Janaway, C., ed. (1999). The Cambridge Companion to Schopenhauer. Cambridge University Press.
  9. Schmitt, R. (1959). Husserl’s Transcendental-Phenomenological Reduction. Philosophy and Phenomenological Research, 20 (2), 238-245.
  10. Thulasidas, M. (2007). O Unreal Universo. Asian Books, Cingapura.
  11. Electromagnetic (EM) interaction is one of the four kinds of interactions in the Standard Model (Griffths, 1987) of particle physics. It is the interaction between charged bodies. Despite the EM repulsion between them, no entanto, the protons stay confined within the nucleus because of the strong interaction, whose magnitude is much bigger than that of EM interactions. The other two interactions are termed the weak interaction and the gravitational interaction.
  12. In quantum field theory, every fundamental interaction consists of emitting a particle and absorbing it in an instant. These so-called virtual particles emitted and absorbed are known as the gauge bosons that mediate the interactions.
  13. Feynman, R. (1985). Quantum Electrodynamics. Addison Wesley.
  14. Thulasidas, M. (2007). O Unreal Universo. Asian Books, Cingapura.
  15. Rees, M. (1966). Appearance of Relativistically Expanding Radio Sources. Natureza, 211, 468-470.
  16. Thulasidas, M. (2007uma). É Rádio Fontes e Gamma Ray Bursts Luminal Booms? International Journal of Modern Physics D, 16 (6), 983-1000.

Universo – Tamanho e Idade

Eu postei esta pergunta que estava me incomodando quando li que eles descobriram uma galáxia a cerca de 13 bilhão de anos-luz de distância. O meu entendimento de que a declaração é: A uma distância de 13 bilhão de anos-luz, houve uma galáxia 13 bilhões de anos atrás, para que possamos ver a luz de agora. Não quer dizer que o universo é, pelo menos, 26 bilhões de anos? Deve ter levado a galáxia sobre 13 bilhões de anos para chegar onde parece ser, ea luz deve tomar outro 13 bilhões de anos para chegar até nós.

Ao responder a minha pergunta, Martin e Swansont (que suponho que são phycisists acadêmicos) apontar meus equívocos e essencialmente me perguntar para saber mais. Todos devem ser respondidas quando estou assimilado, parece! 🙂

Este debate é publicado como um prelúdio para o meu post sobre a teoria do Big Bang, chegando em um ou dois dias.

Mowgli 03-26-2007 10:14 PM

Universo – Tamanho e Idade
I was reading a post in http://www.space.com/ stating that they found a galaxy at about 13 bilhão de anos-luz de distância. Estou tentando descobrir o que isso significa instrução. Para mim, isso significa que 13 bilhões de anos atrás, esta galáxia era onde nós vê-lo agora. Não é isso que 13b LY distância significa é? Se assim, não quer dizer que o universo tem que ser pelo menos 26 bilhões de anos? Quero dizer, todo o universo começou a partir de um ponto singular; como isso poderia ser galáxia onde foi 13 bilhões de anos atrás a menos que tivesse, pelo menos, 13 bilhões de anos para chegar lá? (Ignorando a fase inflacionária para o momento…) Já ouvi pessoas explicam que o próprio espaço está se expandindo. O que diabos isso significa? Não é apenas uma maneira extravagante de dizer que a velocidade da luz é menor, há algum tempo?
swansont 03-27-2007 09:10 AM

Citação:

Postado Originalmente por Mowgli
(Mensagem 329204)
Quero dizer, todo o universo começou a partir de um ponto singular; como isso poderia ser galáxia onde foi 13 bilhões de anos atrás a menos que tivesse, pelo menos, 13 bilhões de anos para chegar lá? (Ignorando a fase inflacionária para o momento…)

Ignorando todo o resto, como é que isso significa que o universo é 26 bilhões de anos?

Citação:

Postado Originalmente por Mowgli
(Mensagem 329204)
Já ouvi pessoas explicam que o próprio espaço está se expandindo. O que diabos isso significa? Não é apenas uma maneira extravagante de dizer que a velocidade da luz é menor, há algum tempo?

A velocidade da luz é uma parte inerente da estrutura atômica, na constante de estrutura fina (alfa). Se c estava mudando, em seguida, os padrões de espectros atómica teria que mudar. Não houve quaisquer dados confirmaram que mostra que alpha mudou (houve o papel ocasional alegando que, mas você precisa de alguém para repetir as medições), e tudo o resto é consistente com nenhuma mudança.

Martin 03-27-2007 11:25 AM

Para confirmar ou reforçar o que disse swansont, há especulações e algumas franjas ou fora do padrão cosmologias que envolvem c mudando ao longo do tempo (ou alfa mudar ao longo do tempo), mas a mudança constantes de coisa só fica mais e mais out.I've governou assistido por mais de 5 anos e quanto mais as pessoas olham e estudar evidência a menos provável, parece que há alguma mudança. Eles descartá-la mais e mais precisamente com a sua data.So provavelmente é melhor ignorar o “variando a velocidade da luz” cosmologias até que um seja completamente familiarizado com a cosmologia padrão dominante.Você tem equívocos Mowgli

  • Relatividade Geral (o 1915 teoria) trunfos Especial Rel (1905)
  • Eles realmente não contradiz, se você entendê-los corretamente, SR porque tem apenas um local de aplicabilidade muito limitada, como para a passagem da nave espacial por:-)
  • Onde quer GR e SR parecem contradizer, acredito GR. É a teoria mais abrangente.
  • O GR não tem um limite de velocidade na taxa que distâncias muito grandes pode aumentar. o único limite de velocidade é em coisas LOCAL (você não pode alcançar e passar um fóton)
  • Então nós podemos fazer e observar o material que está se afastando de nós mais rápido que c. (É longe, SR não se aplica.)
  • Isto foi explicado em um artigo Sci Am Eu acho que no ano passado
  • Google o nome do autor Charles Lineweaver e Tamara Davis.
  • Nós sabemos sobre a abundância de material que é, actualmente, mais de 14 bilhões LY longe.
  • Você precisa aprender algumas cosmologia para que você não fique confuso com essas coisas.
  • Também um “singularidade” não significa um único ponto. isso é um erro popular porque as palavras têm o mesmo som.
  • A singularidade pode ocorrer ao longo de toda uma região, mesmo uma região infinito.

Além disso, o “Big Bang” modelo não se parece com uma explosão de matéria zunindo longe de algum ponto. Ele não deve ser imaginado como aquele. O melhor artigo que explica os erros mais comuns que as pessoas têm é essa coisa Lineweaver e Davis em Sci Am. Acho que foi Janeiro ou fevereiro 2005 mas eu poderia ser um ano de folga. Google. Obtê-lo a partir de sua biblioteca local ou encontrá-lo on-line. O melhor conselho que eu posso dar.

Mowgli 03-28-2007 01:30 AM

Para swansont sobre isso que eu pensei 13 b LY implícita uma idade de 26 b anos:Quando você diz que não é uma galáxia em 13 b LY longe, Eu entendo que ele quer dizer que 13 bilhões de anos atrás o meu tempo, a galáxia estava no ponto onde eu vejo agora (que é 13 b LY longe de mim). Sabendo-se que tudo o que começou a partir do mesmo ponto, ele deve ter tomado a galáxia pelo menos 13 b anos para chegar onde estava 13 b anos atrás. Assim 13+13. Tenho certeza de que deve ser wrong.To Martin: Você está certo, Eu preciso aprender um pouco mais sobre cosmologia. Mas um par de coisas que você mencionou me surpreende — como podemos observar o material que está se afastando de como FTL? Quero dizer, não seria o relativista Doppler fórmula mudança dar imaginário 1 z? E as coisas para além 14 b LY longe – são eles “fora” o universo?Eu certamente olhar para cima e ler os autores que você mencionou. Graças.
swansont 03-28-2007 03:13 AM

Citação:

Postado Originalmente por Mowgli
(Mensagem 329393)
Para swansont sobre isso que eu pensei 13 b LY implícita uma idade de 26 b anos:Quando você diz que não é uma galáxia em 13 b LY longe, Eu entendo que ele quer dizer que 13 bilhões de anos atrás o meu tempo, a galáxia estava no ponto onde eu vejo agora (que é 13 b LY longe de mim). Sabendo-se que tudo o que começou a partir do mesmo ponto, ele deve ter tomado a galáxia pelo menos 13 b anos para chegar onde estava 13 b anos atrás. Assim 13+13. Tenho certeza de que deve estar errado.

Isso vai depender de como você faz a sua calibração. Olhando apenas para um efeito Doppler e ignorando todos os outros fatores, se você sabe que a velocidade se correlaciona com a distância, você tem um certo redshift e você provavelmente calibrar isso para dizer 13b LY se que foi a distância real. Aquela luz seria 13b anos.

Mas, como Martin apontou, espaço está se expandindo; o desvio para o vermelho cosmológico é diferente do efeito Doppler. Uma vez que o espaço intermédio tenha expandido, AFAIK a luz que chega até nós de uma galáxia 13b LY distância não é tão antiga, porque era mais perto, quando a luz foi emitida. Gostaria de pensar que tudo isso é levado em conta nas medidas, de modo que, quando a distância é dada ao Galaxy, é a distância real.

Martin 03-28-2007 08:54 AM

Citação:

Postado Originalmente por Mowgli
(Mensagem 329393)
Eu certamente olhar para cima e ler os autores que você mencionou.

Este post tem 5 ou 6 links para esse artigo Sci Am por Lineweaver e Davis

http://scienceforums.net/forum/showt…965#post142965

É pós #65 na Astronomia liga linha pegajosa

Acontece que o artigo foi em março 2005 questão.

Eu acho que é relativamente fácil de ler—bem escrito. Por isso, deve ajudar.

Quando você leu o artigo Sci Am, mais perguntas—suas perguntas poderia ser divertido para tentar responder:-)