Bye Bye Einstein

Superluminality. Finally!

Starting from his miraculous year of 1905, Einstein has dominated physics with his astonishing insights on space and time, and on mass and gravity. True, there have been other physicists who, with their own brilliance, have shaped and moved modern physics in directions that even Einstein couldn’t have foreseen; and I don’t mean to trivialize neither their intellectual achievements nor our giant leaps in physics and technology. But all of modern physics, even the bizarre reality of quantum mechanics, which Einstein himself couldn’t quite come to terms with, is built on his insights. It is on his shoulders that those who came after him stood for over a century now.

“Science alone of all the subjects contains within itself the lesson of the danger of belief in the infallibility of the greatest teachers in the preceding generation. Learn from science that you must doubt the experts. As a matter of fact, I can also define science another way: Science is the belief in the ignorance of experts.”
— Richard Feynman

One of the brighter ones among those who came after Einstein cautioned us to guard against our blind faith in the infallibility of old masters. Taking my cue from that insight, I, for one, think that Einstein’s century is behind us now. I know, coming from a non-practicing physicist, who sold his soul to the finance industry, this declaration sounds crazy. Delusional even. But I do have my reasons to see Einstein’s ideas go.

[animation]Let’s start with this picture of a dot flying along a straight line (on the ceiling, so to speak). You are standing at the centre of the line in the bottom (on the floor, that is). If the dot was moving faster than light, how would you see it? Well, you wouldn’t see anything at all until the first ray of light from the dot reaches you. As the animation shows, the first ray will reach you when the dot is somewhere almost directly above you. The next rays you would see actually come from two different points in the line of flight of the dot — one before the first point, and one after. Thus, the way you would see it is, incredible as it may seem to you at first, as one dot appearing out of nowhere and then splitting and moving rather symmetrically away from that point. (It is just that the dot is flying so fast that by the time you get to see it, it is already gone past you, and the rays from both behind and ahead reach you at the same instant in time.Hope that statement makes it clearer, rather than more confusing.).

[animation]Why did I start with this animation of how the illusion of a symmetric object can happen? Well, we see a lot of active symmetric structures in the universe. For instance, look at this picture of Cygnus A. There is a “core” from which seem to emanate “features” that float away to the “lobes.” Doesn’t it look remarkably similar to what we would see based on the animation above? There are other examples in which some feature points or knots seem to move away from the core where they first appear at. We could come up with a clever model based on superluminality and how it would create illusionary symmetric objects in the heavens. We could, but nobody would believe us — because of Einstein. I know this — I tried to get my old physicist friends to consider this model. The response is always some variant of this, “Interesting, but it cannot work. It violates Lorentz invariance, doesn’t it?” LV being physics talk for Einstein’s insistence that nothing should go faster than light. Now that neutrinos can violate LV, why not me?

Of course, if it was only a qualitative agreement between symmetric shapes and superluminal celestial objects, my physics friends are right in ignoring me. There is much more. The lobes in Cygnus A, for instance, emit radiation in the radio frequency range. In fact, the sky as seen from a radio telescope looks materially different from what we see from an optical telescope. I could show that the spectral evolution of the radiation from this superluminal object fitted nicely with AGNs and another class of astrophysical phenomena, hitherto considered unrelated, called gamma ray bursts. In fact, I managed to publish this model a while ago under the title, “Are Radio Sources and Gamma Ray Bursts Luminal Booms?“.

You see, I need superluminality. Einstein being wrong is a pre-requisite of my being right. So it is the most respected scientist ever vs. yours faithfully, a blogger of the unreal kind. You do the math. :-)

Such long odds, however, have never discouraged me, and I always rush in where the wiser angels fear to tread. So let me point out a couple of inconsistencies in SR. The derivation of the theory starts off by pointing out the effects of light travel time in time measurements. And later on in the theory, the distortions due to light travel time effects become part of the properties of space and time. (In fact, light travel time effects will make it impossible to have a superluminal dot on a ceiling, as in my animation above — not even a virtual one, where you take a laser pointer and turn it fast enough that the laser dot on the ceiling would move faster than light. It won’t.) But, as the theory is understood and practiced now, the light travel time effects are to be applied on top of the space and time distortions (which were due to the light travel time effects to begin with)! Physicists turn a blind eye to this glaring inconstancy because SR “works” — as I made very clear in my previous post in this series.

Another philosophical problem with the theory is that it is not testable. I know, I alluded to a large body of proof in its favor, but fundamentally, the special theory of relativity makes predictions about a uniformly moving frame of reference in the absence of gravity. There is no such thing. Even if there was, in order to verify the predictions (that a moving clock runs slower as in the twin paradox, for instance), you have to have acceleration somewhere in the verification process. Two clocks will have to come back to the same point to compare time. The moment you do that, at least one of the clocks has accelerated, and the proponents of the theory would say, “Ah, there is no problem here, the symmetry between the clocks is broken because of the acceleration.” People have argued back and forth about such thought experiments for an entire century, so I don’t want to get into it. I just want to point out that theory by itself is untestable, which should also mean that it is unprovable. Now that there is direct experimental evidence against the theory, may be people will take a closer look at these inconsistencies and decide that it is time to say bye-bye to Einstein.

Comments