End of Evolution

To a physicist, life is a neat example of electromagnetic interaction. To a biologist, however, life is a DNA replication algorithm. Let’s mull over the biology view for a few moments.

The genes in our body have only one motive–to get replicated. Our body is created in accordance with a blue print encoded in the genes to “run” this algorithm. How this algorithm gets mapped to our higher level goals and emotions is what life is all about to most people who are not physicists or biologists.

A simple mapping of this algorithm leads to the maxim in evolution “the survival of the fittest.” Any mutation that has the tiniest advantage in terms of survivability gets amplified over time. Similarly, all disadvantaged genes get wiped out.

But evolution in humans (and through our influence, the whole echo-system) has taken a new turn. Survival of the fittest used to mean the survival of the strongest or the smartest. For instance, if I had a genetic condition that made me prone to some life-threatening disease (in other words, if I was not very strong), my chances of passing on my genes would be a little smaller.

However, because of the advances in medicine, the survival chances for such disadvantaged genes are normalized to roughly the same level as those of the rest of the species. Then again, because of the dependence of the quality of health care on money, the survival chances get distorted in favor of the rich. So, is the mapping of the DNA algorithm now “the survival of the richest?”

Wealth is considered a product of intelligence. But intelligence (as defined by money-making ability) is not necessarily genetic. It may be, but we do not know that yet. So over several generations, it is not even the richest that survive, because time averages out the survival chances.

So what exactly is going to survive?

Ref: This post is an excerpt from my book, The Unreal Universe.

Evolution–Inverted Logic

Evolution is usually described as “the survival of the fittest,” or as species evolving to adapt to the environment. To survive, to evolve, to adapt—these are action verbs, implying some kind of intention or general plan. But there is a curious inversion of logic, or reversal of causality in the theory of evolution. This is almost the opposite of intention or plan.

It is easiest to illustrate this inverted logic using examples. Suppose you are on a tropical island, enjoying the nice weather and the beautiful beach. You say to yourself, “This is perfect. This is paradise!” Of course, there is some specific gene containing the blue print of your brain process that leads you to feel this way. It stands to reason that there may have been genetic mutations at some point, which made some people hate this kind of paradise. They may have preferred Alaska in winter. Evidently, such genes had a slightly lower chance of survival because Alaskan winters are not as healthy as tropical paradises. Over millions of years, these genes got all but wiped out.

What this means is that the tropical paradise does not have an intrinsic beauty. It is not even that you happen to find it beautiful. Beauty does not necessarily lie in the eyes of the beholder. It is more like the eyes exist because we are the kind of people who would find such hospitable environments beautiful.

Another example of the inversion of logic in evolution is the reason we find cute babies cute. Our genes survived, and we are here because we are the kind of people who would find healthy babies cute. This reversal of causality has implications in every facet of our existence, all the way up to our notion of free will.

Ref: This post is an excerpt from my book, The Unreal Universe.

Zen and Free Will

Neuroscience has a finding that may question the way we think of our free will.

We now know that there is a time lag of about half a second between the moment “we” take a decision and the moment we become aware of it. This time lag raises the question of who is taking the decision because, in the absence of our conscious awareness, it is not clear that the decision is really ours. This finding has even cast doubt on our notion of free will.

In the experimental setup testing this phenomenon, a subject is hooked up to a computer that records his brain activities (EEG). The subject is then asked make a conscious decision to move either the right hand or the left hand at a time of his choosing. The choice of right or left is also up to the subject. The computer always detects which hand the subject is going to move about half a second before the subject is aware of his own intention. The computer can then order the subject to move that hand–an order that the subject will be unable to disobey, shattering the notion of free-will.

Free will may be a fabrication of our brain after the real action. In other words, the real action takes place by instinct, and the sense of decision is introduced to our consciousness as an afterthought. If we could somehow limit our existence to tiny compartments in time, as Zen suggests, then we might not feel that we had free will.

Ref: This post is an edited excerpt from my book, The Unreal Universe.

The Unreal Universe — Seeing Light in Science and Spirituality

We know that our universe is a bit unreal. The stars we see in the night sky, for instance, are not really there. They may have moved or even died by the time we get to see them. This delay is due to the time it takes for light from the distant stars and galaxies to reach us. We know of this delay.

The same delay in seeing has a lesser known manifestation in the way we perceive moving objects. It distorts our perception such that something coming towards us would look as though it is coming in faster. Strange as it may sound, this effect has been observed in astrophysical studies. Some of the heavenly bodies do look as though they are moving several times the speed of light, while their “real” speed is probably a lot lower.

Now, this effect raises an interesting question–what is the “real” speed? If seeing is believing, the speed we see should be the real speed. Then again, we know of the light travel time effect. So we should correct the speed we see before believing it. What then does “seeing” mean? When we say we see something, what do we really mean?

Light in Physics

Seeing involves light, obviously. The finite speed of light influences and distorts the way we see things. This fact should hardly come as a surprise because we do know that things are not as we see them. The sun that we see is already eight minutes old by the time we see it. This delay is not a big deal; if we want to know what is going on at the sun now, all we have to do is to wait for eight minutes. We, nonetheless, have to “correct” for the distortions in our perception due to the finite speed of light before we can trust what we see.

What is surprising (and seldom highlighted) is that when it comes to sensing motion, we cannot back-calculate the same way we take out the delay in seeing the sun. If we see a celestial body moving at an improbably high speed, we cannot figure out how fast and in what direction it is “really” moving without making further assumptions. One way of handling this difficulty is to ascribe the distortions in our perception to the fundamental properties of the arena of physics — space and time. Another course of action is to accept the disconnection between our perception and the underlying “reality” and deal with it in some way.

Einstein chose the first route. In his groundbreaking paper over a hundred years ago, he introduced the special theory of relativity, in which he attributed the manifestations of the finite speed of light to the fundamental properties of space and time. One core idea in special relativity (SR) is that the notion of simultaneity needs to be redefined because it takes some time for light from an event at a distant place to reach us, and we become aware of the event. The concept of “Now” doesn’t make much sense, as we saw, when we speak of an event happening in the sun, for instance. Simultaneity is relative.

Einstein defined simultaneity using the instants in time we detect the event. Detection, as he defined it, involves a round-trip travel of light similar to Radar detection. We send out light, and look at the reflection. If the reflected light from two events reaches us at the same instant, they are simultaneous.
Another way of defining simultaneity is using sensing — we can call two events simultaneous if the light from them reaches us at the same instant. In other words, we can use the light generated by the objects under observation rather than sending light to them and looking at the reflection.

This difference may sound like a hair-splitting technicality, but it does make an enormous difference in the predictions we can make. Einstein’s choice results in a mathematical picture that has many desirable properties, thereby making further development elegant.

The other possibility has an advantage when it comes to describing objects in motion because it corresponds better with how we measure them. We don’t use Radar to see the stars in motion; we merely sense the light (or other radiation) coming from them. But this choice of using a sensory paradigm, rather than Radar-like detection, to describe the universe results in a slightly uglier mathematical picture.

The mathematical difference spawns different philosophical stances, which in turn percolate to the understanding of our physical picture of reality. As an illustration, let us look at an example from astrophysics. Suppose we observe (through a radio telescope, for instance) two objects in the sky, roughly of the same shape and properties. The only thing we know for sure is that the radio waves from two different points in the sky reach the radio telescope at the same instant in time. We can guess that the waves started their journey quite a while ago.

For symmetric objects, if we assume (as we routinely do) that the waves started the journey roughly at the same instant in time, we end up with a picture of two “real” symmetric lobes more or less the way see them.

But there is different possibility that the waves originated from the same object (which is in motion) at two different instants in time, reaching the telescope at the same instant. This possibility explains some spectral and temporal properties of such symmetric radio sources, which is what I mathematically described in a recent physics article. Now, which of these two pictures should we take as real? Two symmetric objects as we see them or one object moving in such a way as to give us that impression? Does it really matter which one is “real”? Does “real” mean anything in this context?

The philosophical stance in implied in special relativity answers this question unequivocally. There is an unambiguous physical reality from which we get the two symmetric radio sources, although it takes a bit of mathematical work to get to it. The mathematics rules out the possibility of a single object moving in such a fashion as to mimic two objects. Essentially, what we see is what is out there.

On the other hand, if we define simultaneity using concurrent arrival of light, we will be forced to admit the exact opposite. What we see is pretty far from what is out there. We will confess that we cannot unambiguously decouple the distortions due to the constraints in perception (the finite speed of light being the constraint of interest here) from what we see. There are multiple physical realities that can result in the same perceptual picture. The only philosophical stance that makes sense is the one that disconnects the sensed reality and the causes behind what is being sensed.

This disconnect is not uncommon in philosophical schools of thought. Phenomenalism, for instance, holds the view that space and time are not objective realities. They are merely the medium of our perception. All the phenomena that happen in space and time are merely bundles of our perception. In other words, space and time are cognitive constructs arising from perception. Thus, all the physical properties that we ascribe to space and time can only apply to the phenomenal reality (the reality as we sense it). The noumenal reality (which holds the physical causes of our perception), by contrast, remains beyond our cognitive reach.

The ramifications of the two different philosophical stances described above are tremendous. Since modern physics seems to embrace a non-phenomenalistic view of space and time, it finds itself at odds with that branch of philosophy. This chasm between philosophy and physics has grown to such a degree that the Nobel prize winning physicist, Steven Weinberg, wondered (in his book “Dreams of a Final Theory”) why the contribution from philosophy to physics have been so surprisingly small. It also prompts philosophers to make statements like, “Whether ‘noumenal reality causes phenomenal reality’ or whether ‘noumenal reality is independent of our sensing it’ or whether ‘we sense noumenal reality,’ the problem remains that the concept of noumenal reality is a totally redundant concept for the analysis of science.”

One, almost accidental, difficulty in redefining the effects of the finite speed of light as the properties of space and time is that any effect that we do understand gets instantly relegated to the realm of optical illusions. For instance, the eight-minute delay in seeing the sun, because we readily understand it and disassociate from our perception using simple arithmetic, is considered a mere optical illusion. However, the distortions in our perception of fast moving objects, although originating from the same source are considered a property of space and time because they are more complex.

We have to come to terms with the fact that when it comes to seeing the universe, there is no such thing as an optical illusion, which is probably what Goethe pointed out when he said, “Optical illusion is optical truth.”

The distinction (or lack thereof) between optical illusion and truth is one of the oldest debates in philosophy. After all, it is about the distinction between knowledge and reality. Knowledge is considered our view about something that, in reality, is “actually the case.” In other words, knowledge is a reflection, or a mental image of something external, as shown in the figure below.
Commonsense view of reality
In this picture, the black arrow represents the process of creating knowledge, which includes perception, cognitive activities, and the exercise of pure reason. This is the picture that physics has come to accept.
Alternate view of reality
While acknowledging that our perception may be imperfect, physics assumes that we can get closer and closer to the external reality through increasingly finer experimentation, and, more importantly, through better theorization. The Special and General Theories of Relativity are examples of brilliant applications of this view of reality where simple physical principles are relentlessly pursued using formidable machine of pure reason to their logically inevitable conclusions.

But there is another, alternative view of knowledge and reality that has been around for a long time. This is the view that regards perceived reality as an internal cognitive representation of our sensory inputs, as illustrated below.

In this view, knowledge and perceived reality are both internal cognitive constructs, although we have come to think of them as separate. What is external is not the reality as we perceive it, but an unknowable entity giving rise to the physical causes behind sensory inputs. In the illustration, the first arrow represents the process of sensing, and the second arrow represents the cognitive and logical reasoning steps. In order to apply this view of reality and knowledge, we have to guess the nature of the absolute reality, unknowable as it is. One possible candidate for the absolute reality is Newtonian mechanics, which gives a reasonable prediction for our perceived reality.

To summarize, when we try to handle the distortions due to perception, we have two options, or two possible philosophical stances. One is to accept the distortions as part of our space and time, as SR does. The other option is to assume that there is a “higher” reality distinct from our sensed reality, whose properties we can only conjecture. In other words, one option is to live with the distortion, while the other is to propose educated guesses for the higher reality. Neither of these options is particularly attractive. But the guessing path is similar to the view accepted in phenomenalism. It also leads naturally to how reality is viewed in cognitive neuroscience, which studies the biological mechanisms behind cognition.

In my view, the two options are not inherently distinct. The philosophical stance of SR can be thought of as coming from a deep understanding that space is merely a phenomenal construct. If the sense modality introduces distortions in the phenomenal picture, we may argue that one sensible way of handling it is to redefine the properties of the phenomenal reality.

Role of Light in Our Reality

From the perspective of cognitive neuroscience, everything we see, sense, feel and think is the result of the neuronal interconnections in our brain and the tiny electrical signals in them. This view must be right. What else is there? All our thoughts and worries, knowledge and beliefs, ego and reality, life and death — everything is merely neuronal firings in the one and half kilograms of gooey, grey material that we call our brain. There is nothing else. Nothing!

In fact, this view of reality in neuroscience is an exact echo of phenomenalism, which considers everything a bundle of perception or mental constructs. Space and time are also cognitive constructs in our brain, like everything else. They are mental pictures our brains concoct out of the sensory inputs that our senses receive. Generated from our sensory perception and fabricated by our cognitive process, the space-time continuum is the arena of physics. Of all our senses, sight is by far the dominant one. The sensory input to sight is light. In a space created by the brain out of the light falling on our retinas (or on the photo sensors of the Hubble telescope), is it a surprise that nothing can travel faster than light?

This philosophical stance is the basis of my book, The Unreal Universe, which explores the common threads binding physics and philosophy. Such philosophical musings usually get a bad rap from us physicists. To physicists, philosophy is an entirely different field, another silo of knowledge. We need to change this belief and appreciate the overlap among different knowledge silos. It is in this overlap that we can expect to find breakthroughs in human thought.

This philosophical grand-standing may sound presumptuous and the veiled self-admonition of physicists understandably unwelcome; but I am holding a trump card. Based on this philosophical stance, I have come up with a radically new model for two astrophysical phenomena, and published it in an article titled, “Are Radio Sources and Gamma Ray Bursts Luminal Booms?” in the well-known International Journal of Modern Physics D in June 2007. This article, which soon became one of the top accessed articles of the journal by Jan 2008, is a direct application of the view that the finite speed of light distorts the way we perceive motion. Because of these distortions, the way we see things is a far cry from the way they are.

We may be tempted to think that we can escape such perceptual constraints by using technological extensions to our senses such as radio telescopes, electron microscopes or spectroscopic speed measurements. After all, these instruments do not have “perception” per se and should be immune to the human weaknesses we suffer from. But these soulless instruments also measure our universe using information carriers limited to the speed of light. We, therefore, cannot escape the basic constraints of our perception even when we use modern instruments. In other words, the Hubble telescope may see a billion light years farther than our naked eyes, but what it sees is still a billion years older than what our eyes see.

Our reality, whether technologically enhanced or built upon direct sensory inputs, is the end result of our perceptual process. To the extent that our long range perception is based on light (and is therefore limited to its speed), we get only a distorted picture of the universe.

Light in Philosophy and Spirituality

The twist to this story of light and reality is that we seem to have known all this for a long time. Classical philosophical schools seem to have thought along lines very similar to Einstein’s thought experiment.

Once we appreciate the special place accorded to light in modern science, we have to ask ourselves how different our universe would have been in the absence of light. Of course, light is only a label we attach to a sensory experience. Therefore, to be more accurate, we have to ask a different question: if we did not have any senses that responded to what we call light, would that affect the form of the universe?

The immediate answer from any normal (that is, non-philosophical) person is that it is obvious. If everybody is blind, everybody is blind. But the existence of the universe is independent of whether we can see it or not. Is it though? What does it mean to say the universe exists if we cannot sense it? Ah… the age-old conundrum of the falling tree in a deserted forest. Remember, the universe is a cognitive construct or a mental representation of the light input to our eyes. It is not “out there,” but in the neurons of our brain, as everything else is. In the absence of light in our eyes, there is no input to be represented, ergo no universe.

If we had sensed the universe using modalities that operated at other speeds (echolocation, for instance), it is those speeds that would have figured in the fundamental properties of space and time. This is the inescapable conclusion from phenomenalism.

The role of light in creating our reality or universe is at the heart of Western religious thinking. A universe devoid of light is not simply a world where you have switched off the lights. It is indeed a universe devoid of itself, a universe that doesn’t exist. It is in this context that we have to understand the wisdom behind the statement that “the earth was without form, and void” until God caused light to be, by saying “Let there be light.”

The Quran also says, “Allah is the light of the heavens and the earth,” which is mirrored in one of the ancient Hindu writings: “Lead me from darkness to light, lead me from the unreal to the real.” The role of light in taking us from the unreal void (the nothingness) to a reality was indeed understood for a long, long time. Is it possible that the ancient saints and prophets knew things that we are only now beginning to uncover with all our supposed advances in knowledge?

I know I may be rushing in where angels fear to tread, for reinterpreting the scriptures is a dangerous game. Such foreign interpretations are seldom welcome in the theological circles. But I seek refuge in the fact that I am looking for concurrence in the metaphysical views of spiritual philosophies, without diminishing their mystical or theological value.

The parallels between the noumenal-phenomenal distinction in phenomenalism and the Brahman-Maya distinction in Advaita are hard to ignore. This time-tested wisdom on the nature of reality from the repertoire of spirituality is now reinvented in modern neuroscience, which treats reality as a cognitive representation created by the brain. The brain uses the sensory inputs, memory, consciousness, and even language as ingredients in concocting our sense of reality. This view of reality, however, is something physics is yet to come to terms with. But to the extent that its arena (space and time) is a part of reality, physics is not immune to philosophy.

As we push the boundaries of our knowledge further and further, we are beginning to discover hitherto unsuspected and often surprising interconnections between different branches of human efforts. In the final analysis, how can the diverse domains of our knowledge be independent of each other when all our knowledge resides in our brain? Knowledge is a cognitive representation of our experiences. But then, so is reality; it is a cognitive representation of our sensory inputs. It is a fallacy to think that knowledge is our internal representation of an external reality, and therefore distinct from it. Knowledge and reality are both internal cognitive constructs, although we have come to think of them as separate.

Recognizing and making use of the interconnections among the different domains of human endeavour may be the catalyst for the next breakthrough in our collective wisdom that we have been waiting for.

The Worldly Malayalees

If an average Singaporean hears of the World Malayalee Conference, the first thing they would say is, “World what now??” Malayalees are people from the tiny Indian state of Kerala. They are not to be confused with Malays, although some of the things we associate with Malay (such as pratas and biriyani) can be traced back to Kerala.

Such cross cultural exchanges point to an important trait of Malayalees. They tend to fan out and, in their own small ways, conquer the world. They also welcome external influences whole-heartedly. They are perhaps the only people (other than the Chinese, of course) who regularly use a Chinese wok for cooking or a Chinese net for catching their fish. They even practise their own version of Kung-fu, and at times insist that the Chinese actually learned it from them.

International and cosmopolitan in their unique ways for thousands of years, Malayalees are a mixture of opposites, and Kerala a minor economic and sociological enigma. Malayalees enthusiastically embraced Christianity and Muslim religions when their initial missionaries and emissaries ventured outside their places of origin. But, they also welcomed Marxism and atheism with equal fervour.

On an average, Kerala has a per-capita income among the world’s poorest, but all other economic indicators are on a par with the world’s richest. In health indicators such as life expectancy, per-capita number of doctors, and infant mortality, Kerala manages to mirror the US at about a tenth of its per capita wealth. Kerala is the first (and perhaps the only) third world province to boast of better than 90% literacy, and is just about the only place in India and China with more women than men.

Singapore has a special place in the Malayalee heart. Among their initial ventures outside Kerala during the colonial era, Malayalees targeted Singapore as a popular destination. Perhaps due to this historical fondness, Malayalees found it natural to host their World Malayalee Conference here.

Singapore also has soft spot for Malayalees and their contributions. The conference itself will be graced by the presence of the President of Singapore, Mr. S. R. Nathan and the Minister of Foreign Affairs, Mr. George Yeo. President Nathan will launch the Malayalee Heritage and Culture Exhibition, and Minister Yeo will give a key note speech at the Business Forum.

The heritage and culture, dating back to well over two thousand years, is something every Malayalee is rightfully proud of. The Exhibition will showcase everything from cave engravings to ancient ship building technology.

Going beyond the historical and cultural affinities, Kerala also has been a business ally to Singapore, especially in raw seafood. Singapore, in their own right, has provided a steady stream of investments and tourists to Kerala.

Eco-tourism is indeed one of the top attractions Malayalees will showcase during the conference. Nature has been overly kind to Kerala, with the undulating hills of the Western Ghat generously usurping the Monsoons and jealously guarding the Malayalees against any possible plunder of their green riches. Blessed with a temperate climate uncommon to the tropical enclave that it is, and with the hypnotic beauty of the misty green hillsides and tea plantations, Kerala is indeed a paradise waiting, perhaps unwillingly, to be discovered.

This World Malayalalee Conference, with its cultural shows and heritage exhibitions, will display what Kerala has to offer to the world, from tourism and culture to business opportunities and talent pool. It will also showcase Singapore to the Malayalee diaspora and teach them a thing or two about administrative efficiency, cleanliness and business connectivity.

Uncertainly Principle

The uncertainty principle is the second thing in physics that has captured the public imagination. (The first one is E=mc^2.) It says something seemingly straightforward — you can measure two complimentary properties of a system only to a certain precision. For instance, if you try to figure out where an electron is (measure its position, that is) more and more precisely, its speed becomes progressively more uncertain (or, the momentum measurement becomes imprecise).

Where does this principle come from? Before we can ask that question, we have to examine what the principle really says. Here are a few possible interpretations:

  1. Position and momentum of a particle are intrinsically interconnected. As we measure the momentum more accurately, the particle kind of “spreads out,” as George Gamow’s character, Mr. Tompkins, puts it. In other words, it is just one of those things; the way the world works.
  2. When we measure the position, we disturb the momentum. Our measurement probes are “too fat,” as it were. As we increase the position accuracy (by shining light of shorter wavelengths, for instance), we disturb the momentum more and more (because shorter wavelength light has higher energy/momentum).
  3. Closely related to this interpretation is a view that the uncertainty principle is a perceptual limit.
  4. We can also think of the uncertainly principle as a cognitive limit if we consider that a future theory might surpass such limits.

All right, the last two interpretations are my own, so we won’t discuss them in detail here.

The first view is currently popular and is related to the so-called Copenhagen interpretation of quantum mechanics. It is kind of like the closed statements of Hinduism — “Such is the nature of the Absolute,” for instance. Accurate, may be. But of little practical use. Let’s ignore it for it is not too open to discussions.

The second interpretation is generally understood as an experimental difficulty. But if the notion of the experimental setup is expanded to include the inevitable human observer, we arrive at the third view of perceptual limitation. In this view, it is actually possible to “derive” the uncertainty principle.

Let’s assume that we are using a beam of light of wavelength \lambda to observe the particle. The precision in the position we can hope to achieve is of the order of \lambda. In other words, \Delta x \approx \lambda. In quantum mechanics, the momentum of each photon in the light beam is inversely proportional to the wavelength. At least one photon is reflected by the particle so that we can see it. So, by the classical conservation law, the momentum of the particle has to change by at least \Delta p \approx constant\lambda from what it was before the measurement. Thus, through perceptual arguments, we get something similar to the Heisenberg uncertainty principle \Delta x \Delta p = constant.

We can make this argument more rigorous, and get an estimate of the value of the constant. The resolution of a microscope is given by the empirical formula 0.61\lambda/NA, where NA is the numerical aperture, which has a maximum value of one. Thus, the best spatial resolution is 0.61\lambda. Each photon in the light beam has a momentum 2\pi\hbar/\lambda, which is the uncertainty in the particle momentum. So we get \Delta x \Delta p = (0.61\lambda)(2\pi\hbar) \approx 4\hbar, approximately an order of magnitude bigger than the quantum mechanical limit. Through more rigorous statistical arguments, related to the spatial resolution and the expected momentum transferred, it may possible to derive the Heisenberg uncertainty principle through this line of reasoning.

If we consider the philosophical view that our reality is a cognitive model of our perceptual stimuli (which is the only view that makes sense to me), my fourth interpretation of the uncertainty principle being a cognitive limitation also holds a bit of water.

Reference

The latter part of this post is an excerpt from my book, The Unreal Universe.

Sony World Band Radio

I recently bought a Sony World Band Radio receiver. It is a beautiful machine with some twenty frequency bands and all kinds of locks and tricks to latch on to distant radio stations. I bought it for my father, who is fond of listening to his radio late into the night.

Two days after I bought the radio, my father suffered a severe heart failure. A congestive heart failure (CHF) is not to be confused with a heart attack. The symptoms of a CHF are deceptively similar to an asthma attack, which can be doubly treacherous if the patient already has respiratory troubles because the early care may get directed to the lungs while the troubled heart may be ignored. So I thought I would discuss the symptoms here in the hope that it will help those with aging family members who may otherwise misidentify a potential CHF. Much more information is available on the Internet; try Googling “congestive heart failure.”

For asthma patients, a danger sign of a heart failure is persistent breathing difficulty despite inhalation medication. Watch out for breathing trouble that increases when they lie down, and subsides when they sit up. They may have consequent sleeplessness. If they show the symptoms of water retention (swelling in lower limps or neck, unexpected sudden weight gain etc.), and if they have other risk factors (hypertension, irregular heart beat), please do not wait, rush to the hospital.

The prognosis for CHF is not good. It is a chronic condition, progressive and terminal. In other words, it is not something we catch like the flu and get better soon. Depending on the stage the patient is, we have to worry about the quality of life, palliative care or even end of life care. Once a heart has started failing, it is difficult to reverse the progression of the onslaught. There are no easy solutions, no silver bullets. What we can concentrate on, really, is the quality of their life. And the grace and dignity with which they leave it. For most of them, it is their last act. Let’s make it a good one.

By my father’s bedside now, listening to the Sony, with all these sad thoughts in my head, I remember my first taste of real winter in the fall of 1987 in Syracuse. I was listening to the weatherman of the local radio station (was it WSYR?). While lamenting the temperatures going south, he observed, rather philosophically, “C’mon, we all know there’s only one way the temperatures can go.” Yes, we know that there is only one way things can go from here. But we still mourn the passing of a summer full of sunshine and blue skies.

Sony Radio

The Sony radio plays on, impervious to these doleful musings, with young happy voices dishing out songs and jokes for the benefit of a new generation of yuppie commuters full of gusto and eagerness to conquer a world. Little do they know — it was all conquered many times over during the summers of yester years with the same gusto and passion. The old vanguards step aside willingly and make room for the children of new summers.

The new generation has different tastes. They hum to different iTunes on their iPods. This beautiful radio receiver, with most of it seventeen odd short wave bands now silent, is probably the last of its kind. The music and jokes of the next generation have changed. Their hair-do and styles have changed. But the new campaigners charge in with the same dreams of glory as the ones before them. Theirs is the same gusto. Same passion.

Perhaps nothing and nobody really passes on. We all leave behind a little bit of ourselves, tiny echoes of our conquests, memories in those dear to us, and miniscule additions to the mythos that will live on. Like teardrops in the rain.

Choices and Remorse

Remorse is the flipside of choice, and nostalgia the inevitable consequence of any relocation. I should know; I have relocated far too many times in my life — nothing comes for free.

In the sea of unsmiling faces trying to avoid eye-contact every morning, I miss the unexpected joy of a friendly face. Anonymity the price exacted and familiarity a willing sacrifice.

Searching for myself in the glaring lights of these metropolises, I miss the Milky Way and the stars hiding behind the artificial brightness of the skylines. Creature comforts at the expense of inner peace.

In the crystal clear waters at the postcard beaches of Cassis to Bintan to Phuket, I miss the angry waves of the choppy Arabian Sea and the boiling ferrous red beaches. The quest for a promised land at the cost of a paradise lost.

As my powerful sports sedan purrs away from the pack with near contemptuous ease, I miss my old Raleigh bicycle. Rich possession over simple pride.

While sipping the perfect wine matched to the incredibly minuscule helpings of incomprehensible delicacies, I miss a half-tea at Tarams and a mutton omelet at Indian Coffee House, and the friendship around it. Sophistication over small pleasures.

Watching National Geographic on large screens in all its HD glory, I miss the black and white contact prints from my dad’s old Agfa Click III. Technological perfection over emotional content.

And while writing this blog following as many rules of an alien grammar as I can remember, I mourn for the forgotten words of a mother tongue. Communication skills garnered at the cost of a language once owned.

It is not that I would have chosen differently if I had a chance do it all over again. It is the necessity of choice that is cruel. I wish I could choose everything, that I could live all possible lives, and experience all the agonies and all the ecstasies. I know it is silly, but I wish I never had to make a choice.

God’s Blunder

Scriptures tell us, in different ways depending on our denomination and affiliation, that God created the world and everything in it, including us. This is creationism in a nutshell.

Standing in the other corner, all gloved up to knock the daylight out of creationism, is science. It tells us that we came out of complete lifelessness through successive mutations goaded by the need to survive. This is Evolution, a view so widely accepted that the use of capital E is almost justified.

All our experience and knowledge point to the rightness the Evolution idea. It doesn’t totally preclude the validity of God, but it does make it more likely that we humans created God. (It must be just us humans for we don’t see a cat saying Lord’s grace before devouring a mouse!) And, given the inconveniences caused by the God concept (wars, crusades, the dark ages, ethnic cleansing, religious riots, terrorism and so on), it certainly looks like a blunder.

No wonder Nietzsche said,

On the other hand, if God did create man, then all the stupid things that we do — wars, crusades etc. plus this blog — do point to the fact that we are a blunder. We must be such a disappointment to our creator. Sorry Sir!

Photo by The Library of Congress

Sex and Physics — According to Feynman

Physics goes through an age of complacency once in a while. Complacency originates from a sense of completeness, a feeling that we have discovered everything there is to know, the path is clear and the methods well-understood.

Historically, these bouts of complacency are followed by rapid developments that revolutionize the way physics is done, showing us how wrong we have been. This humbling lesson of history is probably what prompted Feynman to say:

Such an age of complacency existed at the turn of the 19th century. Famous personas like Kelvin remarked that all that was left to do was to make more precise measurements. Michelson, who played a crucial role in the revolution to follow, was advised not to enter a “dead” field like physics.

Who would have thought that in less than a decade into the 20th century, we would complete change the way we think of space and time? Who in their right mind would say now that we will again change our notions of space and time? I do. Then again, nobody has ever accused me of a right mind!

Another revolution took place during the course of the last century — Quantum Mechanics, which did away with our notion of determinism and dealt a serious blow to the system-observer paradigm of physics. Similar revolutions will happen again. Let’s not hold on to our concepts as immutable; they are not. Let’s not think of our old masters as infallible, for they are not. As Feynman himself would point out, physics alone holds more examples of the fallibility of its old masters. And I feel that a complete revolution in thought is overdue now.

You might be wondering what all this has to do with sex. Well, I just thought sex would sell better. I was right, wasn’t I? I mean, you are still here!

Feynman also said,

Photo by “Caveman Chuck” Coker cc