Zeros and Ones

Computers are notorious for their infuriatingly literal obedience. I am sure anyone who has ever worked with a computer has come across the lack of empathy on its part — it follows our instructions to the dot, yet ends up accomplishing something altogether different from what we intend. We have all been bitten in the rear end by this literal adherence to logic at the expense of commonsense. We can attribute at least some of the blame to our lack of understanding (yes, literal and complete understanding) of the paradigms used in computing.

Rich in paradigms, the field of computing has a strong influence in the way we think and view the world. If you don’t believe me, just look at the way we learn things these days. Do we learn anything now, or do we merely learn how to access information through browsing and searching? Even our arithmetic abilities have eroded along with the advent of calculators and spreadsheets. I remember the legends of great minds like Enrico Fermi, who estimated the power output of the first nuclear blast by floating a few pieces of scrap paper, and like Richard Feynman, who beat an abacus expert by doing binomial expansion. I wonder if the Fermis and Feynmans of our age would be able to pull those stunts without pulling out their pocket calculators.

Procedural programming, through its unwarranted reuse of mathematical symbols and patterns, has shaped the way we interact with our computers. The paradigm that has evolved is distinctly unmathematical. Functional programming represents a counter attack, a campaign to win our minds back from the damaging influences of the mathematical monstrosities of procedural languages. The success of this battle may depend more on might and momentum rather than truth and beauty. In our neck of the woods, this statement translates to a simple question: Can we find enough developers who can do functional programming? Or is it cheaper and more efficient to stick to procedural and object oriented methodologies?