태그 아카이브: 시공간

What Does it Feel Like to be a Bat?

It is a sensible question: What does it feel like to be a bat? Although we can never really know the answer (because we can never be bats), we know that there is an answer. It feels like something to be a bat. 음, at least we think it does. We think bats have 의식 and conscious feelings. 한편, it is not a sensible question to ask what it feels like to be brick or a table. It doesn’t feel like anything to be an inanimate object.

계속 읽기

언리얼 블로그는 무엇인가?

우리에게 당신의 블로그를 시작하는 이유에 대해 조금 말해, 무엇 그것에 대해 당신이 동기를 유지.

내 글은 다른 잡지와 신문로 나타나기 시작으로 일반 열, 나는 한 장소에 수집 원 — 인터넷 종류의 선집으로, 말하자면. 즉, 내 블로그가 태어난 방법. 블로그를 계속하는 동기 부여 방법 나의 첫번째 책의 기억에서 온다, 언리얼 우주, 랜덤 노트에서 모양을했다 내가 스크랩 책을 쓰기 시작. 나는 사람의 마음은 종종 잊고 그들이 써되지 않는 길을 잃지 교차 아이디어를 생각. 블로그는 그들을 내려 놓고 할 수있는 편리한 플랫폼입니다. 그리고, 블로그는 오히려 공공 때문에, 당신은 잘 자신을 표현하기 위해 약간의 관심과 노력을.

당신은 미래의 블로그에 대한 어떤 계획을 가지고 있습니까?

나는 블로그를 유지합니다, 대략 한 후 일주일 정도의 속도로. 나는 그 자체 블로그에 대한 큰 계획이 없습니다, 그러나 나는 내 블로그에서 봄 수있는 몇 가지 다른 인터넷 아이디어를 가지고 할.

철학은 일반적으로 매우 높은 개념으로 볼 수있다, 지적 대상. 당신은 큰의 세계에 더 큰 영향을 미칠 수 있다고 생각하십니까?

이것은 잠시 동안 나를 고민 질문. 내가 쓴 그것에 포스트, 최선을 다해 그것을 대답 할 수있는. 자신에게 비트를 반복합니다, 철학은 단지 우리가 기쁘게 그 지적대로 추구에 대한 설명입니다. 우리가 종종 그런 식으로 보지 않는 것이 그냥. 예를 들면, 당신은 물리학을 수행하는 경우, 당신은 당신이 아주 멀리 철학에서 제거 있다고 생각. 당신이 물리학 이론에 넣어 철학적 스핀은 대부분 뒤늦게, 그것은 생각된다. 그러나 인스턴스가 어디에 실제로 수 적용 철학은 물리학의 과제를 해결하기, 새로운 이론을 마련. 이것은 참으로 나의 책의 주제이다, 언리얼 우주. 이 질문을, 일부 개체는 빛의 속도보다 빠르게하여 비행하는 경우, 그것이 무엇과 같을 것이다? 최근의 발견으로 그 고체 물질은 빛보다 빠르면 여행 않습니다, 나는 오명을 벗는 느낌 물리학와 개발에 기대.

당신이 철학에 매료되어 많은 대학생을 생각 하는가? 그들이 전공 선택 만들 것입니다 무엇?

오늘날의 세계에서, 나는 두려워 철학은 굉장히 관련이 오전. 그래서 철학에서 우리의 젊은이 관심을 갖게하기 ​​어려울 수 있습니다. 나는 한 뒤에 우리가 수행하는 것이 무엇이든간에 상호 연결 및 지적 측면을 지적하여 관련성을 개선하기 위해 희망 할 수 있다고 생각. 그 그들이 그것을 전공 선택 만들 것? 세상에서 과잉에 의해 구동, 그것은 충분하지 않을 수 있습니다. 그런 다음 다시, 이 관절은 성취 종종 착각 세상. 아마도 철학은 당신이 더 명확하게 도움이 될 수 있습니다, 정말 멋진 소리와 당신이 후되었습니다 그 여자를 감동 — 조잡를 넣어.

더 심각, 하지만, 내가 철학의 부적절에 대해 말한 것은 약이라고 할 수있다, 말, 물리학뿐만 아니라, 그것은 당신에게 컴퓨터와 아이 패드를 제공한다는 사실에도 불구하고. 예를 들면, 코페르니쿠스 개념과 함께 왔을 때 지구는 태양이 아닌 다른 방법으로 라운드 주위를 맴도는 것을, 이 계시가 있었다하지만 심오한, 어떤 방법으로 우리의 일상 생활을 변경 않았다? 당신은 정말 당신의 인생을 살 수있는 정보의 조각을 알고 있나요? 이러한 심오한 사실과 이론이 부적절 리처드 파인만 같은 과학자를 방해.

당신은 철학에 관심이있는 사람에게 조언이나 권고의 어떤 종류를 줄 것이다, 누가 그것에 대해 더 공부를 시작하고 싶습니다?

나는 물리학을 통해 철학으로 내 길을 시작했다. 나는 그 자체로 철학은 당신이 정말로 그것을 시작할 수 없습니다 다른 어떤에서 너무 분리 된 생각. 작업이 수반 어떤에서 당신을 향해 길을 찾을 수있다, 다음 거기에서 확장. 적어도, 내가 그것을 어떻게 그건, 그 방법은 매우 실제 제작. 당신은 자신에게 같은 질문을하면 공간은 무엇인가 (당신은 그 공간의 계약을 말하는 것이 무엇을 의미하는지 이해할 수 있도록, 예를 들어), 당신이 얻을 대답은 매우 관련이. 그들은 철학적 횡설수설하지 않습니다. 나는 관련성과 유사한 경​​로가 모든 필드에 존재하는 생각. 예 방법에 대한 참조 Pirsig 그의 작품에서 품질의 개념을 가져왔다, 하지 추상적 인 정의로, 하지만이 모든 소비로 (결국 위험) 강박 관념.

내 관점에서, 철학은 인간의 노력의 여러 사일로 래퍼입니다. 그것은 당신이 관련이 없어 보이는 분야들 사이의 링크를 볼 수 있습니다, 같은 인지 신경 과학 및 특수 상대성. 어떤 실제적인 사용이 지식입니다, 나는 당신에게 말할 수 없다. 그런 다음 다시, 어떤 실제적인 사용의 삶 자체입니다?

Only a Matter of Time

Although we speak of space and time in the same breath, they are quite different in many ways. Space is something we perceive all around us. We see it (차라리, objects in it), we can move our hand through it, and we know that if our knee tries to occupy the same space as, 말, the coffee table, it is going to hurt. 환언, we have sensory correlates to our notion of space, starting from our most precious sense of sight.

Time, 한편, has no direct sensory backing. And for this reason, it becomes quite difficult to get a grip over it. 시간이란 무엇인가? We sense it indirectly through change and motion. But it would be silly to define time using the concepts of change and motion, because they already include the notion of time. The definition would be cyclic.

Assuming, for now, that no definition is necessary, let’s try another perhaps more tractable issue. Where does this strong sense of time come from? I once postulated that it comes from our knowledge of our demise — that questionable gift that we all possess. All the time durations that we are aware of are measured against the yardstick of our lifespan, perhaps not always consciously. I now wonder if this postulate is firm enough, and further ruminations on this issue have convinced me that I am quite ignorant of these things and need more knowledge. Ah.. only if I had more time. 🙂

어쨌든, even this more restricted question of the origin of time doesn’t seem to be that tractable, 결국. Physics has another deep problem with time. It has to do with the directionality. It cannot easily explain why time has a direction — an arrow, 말하자면. This arrow does not present itself in the fundamental laws governing physical interactions. All the laws in physics are time reversible. The laws of gravity, electromagnetism or quantum mechanics are all invariant with respect to a time reversal. 즉 말을하는 것입니다, they look the same with time going forward or backward. So they give no clue as to why we experience the arrow of time.

그러나, we know that time, as we experience it, is directional. We can remember the past, but not the future. What we do now can affect the future, but not the past. If we play a video tape backwards, the sequence of events (like broken pieces of glass coming together to for a vase) will look funny to us. 그러나, if we taped the motion of the planets in a solar system, or the electron cloud in an atom, and played it backward to a physicist, he would not find anything funny in the sequences because the physical laws are reversible.

Physics considers the arrow of time an emergent property of statistical collections. To illustrate this thermodynamic explanation of time, let’s consider an empty container where we place some dry ice. After some time, we expect to see a uniform distribution of carbon dioxide gas in the container. Once spread out, we do not expect the gas in the container to coagulate into solid dry ice, no matter how long we wait. The video of CO2 spreading uniformly in the container is a natural one. Played backward, the sequence of the CO2 gas in the container congealing to solid dry ice in a corner would not look natural to us because it violates our sense of the arrow of time.

The apparent uniformity of CO2 in the container is due to the statistically significant quantity of dry ice we placed there. If we manage to put a small quantity, say five molecules of CO2, we can fully expect to see the congregation of the molecules in one location once in a while. 따라서, the arrow of time manifests itself as a statistical or thermodynamic property. Although the directionality of time seems to emerge from reversible physical laws, its absence in the fundamental laws does look less than satisfactory philosophically.

물 반 통

우리 모두는 볼과 공간을 느낄, 하지만 정말 무엇인가? 공간 철학자을 고려할 수 있다는 그 기본적인 것들 중 하나입니다 “직관.” 철학자들은 아무것도 볼 때, 그들은 약간의 기술 얻기. 공간 관계인가, 에서와 같이, 오브젝트 간의 관계의 관점에서 정의? 관계 기업이 가족처럼 — 당신은 당신의 부모가, 형제, 배우자, 아이 등. 형성 당신은 당신의 가족을 어떻게 생각. 하지만 가족 자체가 물리적 개체 아니다, 그러나 관계 만 컬렉션. 공간은 또한 같은 것입니다? 이상의 개체가 상주하고 자신의 일을 실제 컨테이너처럼입니다?

당신은 그 철학적 hairsplittings의 두 또 다른 하나의 차이를 고려할 수있다, 하지만 정말 아니다. 어떤 공간, 엔티티 공간도 어떤 종류입니다, 물리학에 엄청난 의미를 가지고. 예를 들면, 그것은 자연의 관계형 경우, 다음 물질의 부재하에, 공백은 없다. 많은 다른 가족 구성원의 부재 등에, 당신은 가족이 없다. 한편, 그것은 용기와 같은 엔티티 인 경우, 모든 문제 빼앗아 경우 공간도 존재, 몇 가지 문제가 나타날 때까지 대기.

그래서, 물어? 음, 의 물 반 양동이를 보자 주위를 회​​전. 캐치 내의 물에 한 번, 표면은 포물선 모양을 형성 할 것이다 — 당신은 알고있다, 원심력, 중량, 표면 장력과 모든. 지금, 버킷을 중지, 대신 주위에 우주 전체를 회전. 나는 알고있다, 그것은 더 어렵다. 그러나 당신이 그것을하고 상상. 물 표면 포물선 것인가? 나는 그것이 될 것이라고 생각, 버킷 회전 또는 주위 회전하는 우주 전체 사이에 큰 차이가 없기 때문에.

지금, 의 우리가 우주를 비울 있다고 가정 해 봅시다. 이 반 전체 버킷하지만 아무것도 없다. 지금은 주위에 회전. 무엇 물 표면에 발생? 공간 관계가 있다면, 우주의 부재, 버킷 외측에 공간이 없다가 회전하고 있는지 알 수있는 방법이 없다. 물 표면은 평평해야합니다. (사실, 구면되어야, 하지만 잠시 그​​ 무시합니다.) 그리고 공간 컨테이너와 같은 경우, 회전 버킷은 포물선 표면에 발생한다.

물론, 우리는 우리가 우주를 비우고 물통을 회전 할 수있는 방법이 없기 때문에이 될 것입니다 어떤 방법으로 알 방법이 없습니다. 그러나 그것을 기반으로 공간과 건축 이론의 성격을 추측에서 우리를 막을 수 없습니다. 뉴턴의 공간은 컨테이너와 같은 것입니다, 마음에있는 동안, 아인슈타인의 이론은 공간의 관계 개념이.

그래서, 당신이 볼, 철학은 중요하지 않습니다.

왜 빛의 속도?

What is so special about light that its speed should figure in the basic structure of space and time and our reality? This is the question that has nagged many scientists ever since Albert Einstein published On the Electrodynamics of Moving Bodies about 100 years ago.

In order to understand the specialness of light in our space and time, we need to study how we perceive the world around us and how reality is created in our brains. We perceive our world using our senses. The sensory signals that our senses collect are then relayed to our brains. The brain creates a cognitive model, a representation of the sensory inputs, and presents it to our conscious awareness as reality. Our visual reality consists of space much like our auditory world is made up of sounds.

Just as sounds are a perceptual experience rather than a fundamental property of the physical reality, space also is an experience, or a cognitive representation of the visual inputs, not a fundamental aspect of “the world” our senses are trying to sense.

Space and time together form what physics considers the basis of reality. The only way we can understand the limitations in our reality is by studying the limitations in our senses themselves.

At a fundamental level, how do our senses work? Our sense of sight operates using light, and the fundamental interaction involved in sight falls in the electromagnetic (EM) category because light (or photon) is the intermediary of EM interactions. The exclusivity of EM interaction is not limited to our the long range sense of sight; all the short range senses (touch, taste, smell and hearing) are also EM in nature. To understand the limitations of our perception of space, we need not highlight the EM nature of all our senses. Space is, 전반적으로, the result of our sight sense. But it is worthwhile to keep in mind that we would have no sensing, and indeed no reality, in the absence of EM interactions.

Like our senses, all our technological extensions to our senses (such as radio telescopes, electron microscopes, redshift measurements and even gravitational lensing) use EM interactions exclusively to measure our universe. 따라서, we cannot escape the basic constraints of our perception even when we use modern instruments. The Hubble telescope may see a billion light years farther than our naked eyes, 그러나 그것은 보는 것은 여전히​​ 우리의 눈이 볼보다 억년 나이가. Our perceived reality, whether built upon direct sensory inputs or technologically enhanced, is a subset of electromagnetic particles and interactions only. It is a projection of EM particles and interactions into our sensory and cognitive space, a possibly imperfect projection.

This statement about the exclusivity of EM interactions in our perceived reality is often met with a bit of skepticism, mainly due to a misconception that we can sense gravity directly. This confusion arises because our bodies are subject to gravity. There is a fine distinction between “being subject to” 및 “being able to sense” gravitational force.

This difference is illustrated by a simple thought experiment: Imagine a human subject placed in front of an object made entirely of cosmological dark matter. There is no other visible matter anywhere the subject can see it. Given that the dark matter exerts gravitational force on the subject, will he be able to sense its presence? He will be pulled toward it, but how will he know that he is being pulled or that he is moving? He can possibly design some mechanical contraption to detect the gravity of the dark matter object. But then he will be sensing the effect of gravity on some matter using EM interactions. 예를 들면, he may be able to see his unexplained acceleration (effect of gravity on his body, which is EM matter) with respect to reference objects such as stars. But the sensing part here (seeing the stars) involves EM interactions.

It is impossible to design any mechanical contraption to detect gravity that is devoid of EM matter. The gravity sensing in our ears again measures the effect of gravity on EM matter. In the absence of EM interaction, it is impossible to sense gravity, or anything else for that matter.

Electromagnetic interactions are responsible for our sensory inputs. Sensory perception leads to our brain’s representation that we call reality. Any limitation in this chain leads to a corresponding limitation in our sense of reality. One limitation in the chain from senses to reality is the finite speed of photon, which is the gauge boson of our senses. The finite speed of the sense modality influences and distorts our perception of motion, 시공간. Because these distortions are perceived as a part of our reality itself, the root cause of the distortion becomes a fundamental property of our reality. This is how the speed of light becomes such an important constant in our space time. The sanctity of light is respected only in our perceived reality.

If we trust the imperfect perception and try to describe what we sense at cosmological scales, we end up with views of the world such as the big bang theory in modern cosmology and the general and special theories of relativity. These theories are not wrong, and the purpose of this book is not to prove them wrong, just to point out that they are descriptions of a perceived reality. They do not describe the physical causes behind the sensory inputs. The physical causes belong to an absolute reality beyond our senses.

The distinction between the absolute reality and our perception of it can be further developed and applied to certain specific astrophysicalcosmological phenomena. When it comes to the physics that happens well beyond our sensory ranges, 우리가 정말 계정에 역할을해야하는 그들을 보는 우리의 인식과인지 놀이. The universe as we see it is only a cognitive model created out of the photons falling on our retina or on the photo sensors of the Hubble telescope. 때문에 정보 매체의 한정된 속도 (즉 광자), our perception is distorted in such a way as to give us the impression that space and time obey special relativity. 그들은 할, 하지만, 공간 및 시간의 절대 현실 아니다. They are only a part of the unreal universe that is our perception of an unknowable reality.

[This again is an edited excerpt from my book, 언리얼 우주.]

What is Space?

This sounds like a strange question. We all know what space is, it is all around us. When we open our eyes, we see it. 보는이 믿는 경우, then the question “공간은 무엇입니까?” indeed is a strange one.

공정하게, we don’t actually see space. We see only objects which we assume are in space. Rather, we define space as whatever it is that holds or contains the objects. It is the arena where objects do their thing, the backdrop of our experience. 환언, experience presupposes space and time, and provides the basis for the worldview behind the currently popular interpretations of scientific theories.

Although not obvious, this definition (or assumption or understanding) of space comes with a philosophical baggage — that of realism. The realist’s view is predominant in the current understanding of Einstien’s theories as well. But Einstein himself may not have embraced realism blindly. Why else would he say:

In order to break away from the grip of realism, we have to approach the question tangentially. One way to do it is by studying the neuroscience and cognitive basis of sight, which after all provides the strongest evidence to the realness of space. 공간, 전반적으로, is the experience associated with sight. Another way is to examine experiential correlates of other senses: 소리는 무엇인가?

When we hear something, what we hear is, 자연스럽게, 소리. We experience a tone, an intensity and a time variation that tell us a lot about who is talking, what is breaking and so on. But even after stripping off all the extra richness added to the experience by our brain, the most basic experience is still a “sound.” We all know what it is, but we cannot explain it in terms more basic than that.

Now let’s look at the sensory signal responsible for hearing. As we know, these are pressure waves in the air that are created by a vibrating body making compressions and depressions in the air around it. Much like the ripples in a pond, these pressure waves propagate in almost all directions. They are picked up by our ears. By a clever mechanism, the ears perform a spectral analysis and send electric signals, which roughly correspond to the frequency spectrum of the waves, to our brain. 그 주, so far, we have a vibrating body, bunching and spreading of air molecules, and an electric signal that contains information about the pattern of the air molecules. We do not have sound yet.

The experience of sound is the magic our brain performs. It translates the electrical signal encoding the air pressure wave patterns to a representation of tonality and richness of sound. Sound is not the intrinsic property of a vibrating body or a falling tree, it is the way our brain chooses to represent the vibrations or, more precisely, the electrical signal encoding the spectrum of the pressure waves.

Doesn’t it make sense to call sound an internal cognitive representation of our auditory sensory inputs? If you agree, then reality itself is our internal representation of our sensory inputs. This notion is actually much more profound that it first appears. If sound is representation, so is smell. So is space.

Figure
그림: Illustration of the process of brain’s representation of sensory inputs. Odors are a representation of the chemical compositions and concentration levels our nose senses. 소리는 객체에 의해 생성 된 진동 공기 압력 파의 맵핑. 시야에, 우리의 표현 공간, 아마도 시간. 그러나, we do not know what it is the representation of.

We can examine it and fully understand sound because of one remarkable fact — we have a more powerful sense, namely our sight. Sight enables us to understand the sensory signals of hearing and compare them to our sensory experience. 효과, sight enables us to make a model describing what sound is.

Why is it that we do not know the physical cause behind space? 결국, we know of the causes behind the experiences of smell, 소리, 등. The reason for our inability to see beyond the visual reality is in the hierarchy of senses, best illustrated using an example. Let’s consider a small explosion, like a firecracker going off. When we experience this explosion, we will see the flash, hear the report, smell the burning chemicals and feel the heat, if we are close enough.

The qualia of these experiences are attributed to the same physical event — the explosion, the physics of which is well understood. 지금, let’s see if we can fool the senses into having the same experiences, in the absence of a real explosion. The heat and the smell are fairly easy to reproduce. The experience of the sound can also be created using, 예를 들어, a high-end home theater system. How do we recreate the experience of the sight of the explosion? A home theater experience is a poor reproduction of the real thing.

In principle at least, we can think of futuristic scenarios such as the holideck in Star Trek, where the experience of the sight can be recreated. But at the point where sight is also recreated, is there a difference between the real experience of the explosion and the holideck simulation? The blurring of the sense of reality when the sight experience is simulated indicates that sight is our most powerful sense, and we have no access to causes beyond our visual reality.

Visual perception is the basis of our sense of reality. All other senses provide corroborating or complementing perceptions to the visual reality.

[This post has borrowed quite a bit from my book.]

라이트 소요 시간 효과 및 우주 론적 특징

이 게시되지 않은 문서 내 이전의 문서에 속편이다 (여기로 게시 “라디오 소스 및 감마선 버스트 내강 붐인가?“). 이 블로그 버전은 추상을 포함, 서론과 결론. 기사의 전체 버전은 PDF 파일로 사용할 수 있습니다.

.

추상

라이트 이동 시간 효과 (LTT) 빛의 속도의 유한 광 발현 아르. 또한 공간과 시간의 픽처인지 지각 제약을 고려 될 수있다. LTT 효과의이 해석을 바탕으로, 우리는 최근 감마 레이 버스트의 스펙트럼의 시공간적 변화를 새로운 가상의 모델을 제시 (GRB) 그리고 소스 무선. 이 글에서, 우리는 더 분석을하고 LTT 효과가 팽창하는 우주의 적색 편이 관측 등 우주 론적 기능을 설명하는 좋은 프레임 워크를 제공 할 수 있다는 것을 보여, 및 우주 마이크로파 배경 복사. 매우 다른 길이와 시간 규모에서이 겉으로는 별개의 현상의 통일, 그 개념 단순성과 함께, 이 프레임 워크의 호기심 유용성의 지표로 간주 될 수, 하지의 유효성 경우.

소개

빛의 속도가 유한 한 우리의 거리 및 속도를 인식하는 방법에 중요한 역할. 우리는 우리가 그들을 볼 같은 일이 아니라는 것을 알고 있기 때문에이 사실은 거의 놀라운 일이 없어야한다. 우리가 보는 태양, 예를 들어, 이미 우리가 볼 수있는 시간으로 팔분 오래. 이러한 지연은 간단하다; 우리는 지금 일에 무슨 일이 일어나고 있는지 알고 싶다면, 우리가 할 일은 팔분을 기다리는. 우리, 그럼에도 불구하고, 에있다 “올바른” 우리의 인식이 왜곡으로 인해 빛의 유한 한 속도로 우리는 우리가 무엇을보고 믿을 수 전에.

어떤 놀라운 일이다 (그리고 거의 강조하지) 이 때 움직임을 감지 할 수 있다는 것입니다, 우리는 다시 - 계산 해 보는 우리는 지연 꺼내 동일하게 없다. 우리는 천체가 같지 않은 빠른 속도로 이동을 참조하는 경우, 우리는 얼마나 빨리 어떤 방향으로 알아낼 수 없습니다 “정말로” 상기 가정을하지 않고 이동. 이러한 어려움을 처리하는 한 가지 방법은 물리학 분야의 기본 속성에 모션 우리의 인식의 왜곡을 돌리는 것입니다 — 시공간. 액션의 또 다른 과정은 우리의 인식과 기반 사이의 분리를 허용하는 것입니다 “현실” 어떤 방법으로 대처.

두 번째 옵션을 탐색, 우리는 우리의 인식 그림을 일으키는 근본적인 현실을 가정. 우리는 더 고전 역학을 순종으로이 기본이되는 현실을 모델링, 과 인식의 장치를 통해 우리의 인식 사진을 해결. 환언, 우리는 기본 현실의 특성에 빛의 유한 한 속도의 발현 특성하지 않습니다. 대신, 우리는이 모델이 예측하는 것이 우리의 인식 사진을 해결하고 우리가 관찰 할 속성이 지각 제약에서 발생 할 수 있는지 여부를 확인.

공간, 그것의 개체, 그들의 움직임은, 전반적으로, 광학 인식의 생성물. 하나는 그것을 인식으로 인식이 현실에서 발생하는 것이 당연 하나는 그것을 가지고하는 경향이있다. 이 글에서, 우리는 우리가 인식하는 기본 현실의 불완전하거나 왜곡 된 그림이 있다는 입장을. 또한, 우리는 기본 현실에 대한 고전 역학을 시도하고 (있는 우리는 절대 같은 용어를 사용, noumenal 또는 물리적 현실) 우리의 인식 그림으로 맞는 경우 그보고 우리의 인식을 유발하는 (우리가 감지 또는 경이적인 현실을 참조 할 수있는).

우리가 지각의 양상이 단순한 망상이라는 것을 의미하지 않습니다. 그들은하지 않습니다; 현실 인식의 최종 결과이기 때문에 그들은 참으로 우리의 감지 된 현실의 일부. 이 통찰력은 괴테의 유명한 문 뒤에있을 수 있습니다, “착시 광학 사실이다.”

우리는 최근에 물리학 문제로 생각이 라인을 적용. 우리는 GRB의 스펙트럼 진화에보고하고 소닉 붐의 것과 매우 유사한 것으로 밝혀. 이 사실을 이용하여, 우리는 우리의 인식으로 GRB에 대한 모델을 제시 “내강” 나무, 로렌츠 불변성과 기본 현실에 대한 우리의 모델을 따르는 것이 현실의 우리의 인식의 그림이 이해 (인지 된 사진을 일으키는) 상대 론적 물리학을 위반할 수 있습니다. 모델과 관측 된 기능 사이의 눈에 띄는 계약, 그러나, 대칭 라디오 소스에 GRBs 이후로 연장, 또한 가상의 내강 붐 지각 효과로서 간주 될 수있는.

이 글에서, 우리는 모델의 다른 의미에서 보면. 우리는 빛의 여행 시간 사이의 유사성 시작 (LTT) 효과와 특수 상대성 이론의 좌표 변환 (SR). 이러한 유사성은 SR 부분적 LTT 효과에 기초하여 유도하기 때문에 전혀 놀라운 일이다. 우리는 다음 LTT 효과의 공식화로 SR의 해석을 제안하고이 해석에 비추어 몇 가지 관찰 우주 현상을 연구.

라이트 소요 시간 효과 및 SR 사이의 유사점

서로에 대해 움직이는 좌표계 간의 상대성은 선형 좌표 변환 실무 그룹의 견해. 우리는 SR에 내장 된 시간과 공간의 성격에 숨겨진 가정에 직선의 출처를 추적 할 수 있습니다, 아인슈타인에 의해 명시된 바와 같이: “먼저 그것을 방정식은 우리가 공간 및 시간 속성 균질성의 특성으로 인하여 선형 받아야한다는 것은 자명 한 사실이다.” 때문에 선형성이 가정의, 변환식의 도출 원래 객체 접근 및 후퇴 간의 비대칭 성을 무시. 두 접근 및 후퇴 오브젝트는 항상 서로 멀어져 좌표 시스템 2로 설명 될 수있다. 예를 들면, 시스템의 경우 K 다른 시스템에 대해 이동 k 포지티브의 X 축을 따라 k, 휴식 후 객체 K 양에서 x 음에서 다른 개체 동안 멀어져 x 의 기원에 관찰자 접근하고있다 k.

아인슈타인의 원래 논문에서 좌표 변환이 유도된다, 일부, 빛의 이동 시간 현시 (LTT) 효과와 모든 관성계에서 빛 속도의 불변성을 부과의 결과. 이 첫 번째 사고 실험에서 가장 명백하다, 막대와 움직이는 관찰자가 자신의 시계를 어디서 찾을 인해로드의 길이를 따른 광 이동 시간의 차이에 동기화되지. 그러나, SR의 현재 해석, 좌표 변환은 공간과 시간의 기본적인 속성 간주.

SR이 해석으로부터 발생 어려움 중 하나는 관성 두 프레임 간의 상대 속도의 정의가 불명확해진다 있다는 것이다. 이 프레임의 이동 속도 인 경우 관찰자에 의해 측정되는, 다음 핵심 영역에서 시작 라디오 제트기에서 관찰 superluminal 운동은 SR의 위반이됩니다. 그것은 LT 효과를 고려하여 우리가 추론 할 속도를하는 경우, 우리는 superluminality가 금지되어있는 여분의 임시 가정을 고용해야. 이러한 어려움은 SR의 나머지 광 이동 시간 효과를 풀리게 나을 수 있음을 시사.

이 섹션에서, 우리는 뇌에​​ 의해 생성인지 모델의 일부로서 시간과 공간을 고려할 것, 특수 상대성 이론은인지 적 모델에 적용 주장. 절대 현실 (있는 SR-같은 공간 - 시간은 우리의 인식입니다) SR의 제한 사항을 준수 할 필요가 없습니다. 특히, 객체는 subluminal 속도 제한되지 않습니다, 그들은 시간과 공간의 우리의 인식에 subluminal 속도로 제한됩니다 것처럼하지만 그들은 우리에게 나타날 수 있습니다. 우리는 SR의 나머지 부분에서 LTT 효과를 풀다 경우, 우리는 현상의 다양한 배열을 이해할 수있다, 우리는이 문서에서 살펴 보 겠지만.

SR 달리, LTT 효과를 기반으로 고려 관찰자 접근 객체의 변형 법의 본질적으로 다른 결과 세트 및 그 그에게서 멀어져. 더 일반적으로, 변환은 물체의 속도와 시야 관찰자의 선 사이의 각도에 따라 달라집니다. LTT 효과에 기초하여 상기 변환식은 접근 및 비대칭 물체를 취급하여 보낸 멀어져, 그들은 쌍둥이 역설에 자연 솔루션을 제공, 예를 들어.

결론

시간과 공간은 우리의 눈에 빛을 입력 밖으로 만든 현실의 일부이기 때문에, 그들의 속성 중 일부는 LTT 효과의 발현입니다, 특히 모션 우리의 인식에. 절대, 아마도 빛 입력을 생성하는 물리적 현실은 우리의 인식 공간과 시간에 우리가 돌​​리는 특성을 순종 할 필요가 없습니다.

우리는 LTT 효과 SR의 사람들에게 질적으로 동일하다는 것을 보여 주었다, SR은 서로 멀어져 참조 프레임을 고려 것을주의. SR의 좌표 변환이 LTT 효과에 부분적으로 기초하여 도출되기 때문 유사성은 놀라운 일이 아니다, 그리고 일부 빛은 모든 관성계에 대하여 동일한 속도로 주행 상정. LTT의 표현으로 치료, 우리는 SR의 주요 동기가 해결되지 않았다, 이는 맥스웰 방정식의 공변 제제이다. 이 좌표 변환에서 전자기학의 공분산을 풀리게 가능할 수도, 이 문서에서 시도되지 않지만.

SR 달리, LTT 효과 비대칭. 이러한 비대칭은 superluminality과 관련된 쌍둥이 역설의 해결과 가정 인과 관계 위반의 해석을 제공합니다. 게다가, superluminality의 인식은 LTT 효과에 의해 변조, 및 설명 gamma 선 버스트 및 대칭 제트. 우리는 문서에서 보여으로, superluminal 운동의 인식은 또한 우주와 우주 마이크로파 배경 복사의 확장과 같은 우주 현상에 대한 설명을 보유하고. LTT 효과는 우리의 인식에 근본적인 제약으로 간주되어야, 결과적으로 물리학, 오히려 고립 된 현상에 대한 편리 설명으로보다.

우리의 인식이 LTT 효과를 통해 여과 점을 감안, 우리는 절대의 성격을 이해하기 위해 우리의 현실 인식에서 그들을 deconvolute해야, 실제 현실. 이 디컨 볼 루션, 그러나, 여러 솔루션의 결과. 따라서, 절대, 실제 현실은 우리의 이해 넘어, 및 가정 한 절대 현실의 속성은 통해 검증 할 수있는 방법을 잘 결과 인식 현실은 우리의 관찰과 일치. 이 글에서, 우리는 기본이되는 현실은 우리의 직관적으로 명백한 고전 역학을 따르는 것으로 가정 등 이동 시간 효과를 통해 여과 할 때 이러한 현실이 그것을 어떻게 받아 들일 것인가 질문을. 우리는이 특별한 치료는 우리가 관찰 특정 천체 물리학 및 우주론 현상을 설명 할 수 있음을 입증.

SR의 좌표 변환은 공간과 시간의 재정의로 볼 수있다 (또는, 보다 일반적으로, 현실) 빛 때문에 이동 시간 효과에 모션 우리의 인식의 왜곡을 수용하기 위해. 하나는 SR이 적용 논쟁을 유혹 할 수있다 “실제” 시공간, 하지 우리의 인식. 인수의이 행은 질문을 구걸, 무엇 진짜? 현실은 우리의 감각 입력부터 우리의 뇌에서 생성 만인지 모델입니다, 가장 중요한 인 시각 입력. 공간 자체가이인지 모델의 일부입니다. 공간의 특성은 우리의 인식의 제약의 매핑입니다.

현실의 진정한 이미지로 우리의 인식을 받아들이고 실제로 특수 상대성 이론의 설명에 따라 시간과 공간을 재정의 선택은 철학적 선택 금액. 문서에 제시된 대안은 현실이 뇌의인지 모델은 우리의 감각 입력을 기준 것을 현대 신경 과학의 관점에서 영감을. 이 대안을 채택하는 것은 절대 현실의 본질을 추측하고 우리의 현실 인식에 그 예측 프로젝션을 비교 우리를 감소. 그것은 단순화하고 물리학에서 어떤 이론을 규명하고 우주의 일부 수수께끼 같은 현상을 설명 할 수있다. 그러나, 이 옵션은 알 수없는 절대 현실에 대한 또 다른 철학적 입장이다.

The Philosophy of Special Relativity — A Comparison between Indian and Western Interpretations

추상: The Western philosophical phenomenalism could be treated as a kind of philosophical basis of the special theory of relativity. The perceptual limitations of our senses hold the key to the understanding of relativistic postulates. The specialness of the speed of light in our phenomenal space and time is more a matter of our perceptual apparatus, than an input postulate to the special theory of relativity. The author believes that the parallels among the phenomenological, Western spiritual and the Eastern Advaita interpretations of special relativity point to an exciting possibility of unifying the Eastern and Western schools of thought to some extent.

– Editor

Key Words: Relativity, Speed of Light, Phenomenalism, Advaita.

소개

The philosophical basis of the special theory of relativity can be interpreted in terms of Western phenomenalism, which views space and time are considered perceptual and cognitive constructs created out our sensory inputs. From this perspective, the special status of light and its speed can be understood through a phenomenological study of our senses and the perceptual limitations to our phenomenal notions of space and time. A similar view is echoed in the 브라만마야 의 구별 Advaita. If we think of space and time as part of 마야, we can partly understand the importance that the speed of light in our reality, as enshrined in special relativity. The central role of light in our reality is highlighted in the Bible as well. These remarkable parallels among the phenomenological, Western spiritual and the Advaita interpretations of special relativity point to an exciting possibility of unifying the Eastern and Western schools of thought to a certain degree.

Special Relativity

Einstein unveiled his special theory of relativity2 a little over a century ago. In his theory, he showed that space and time were not absolute entities. They are entities relative to an observer. An observer’s space and time are related to those of another through the speed of light. 예를 들면, nothing can travel faster than the speed of light. In a moving system, time flows slower and space contracts in accordance with equations involving the speed of light. 빛, 따라서, enjoys a special status in our space and time. This specialness of light in our reality is indelibly enshrined in the special theory of relativity.

Where does this specialness come from? What is so special about light that its speed should figure in the basic structure of space and time and our reality? This question has remained unanswered for over 100 년. It also brings in the metaphysical aspects of space and time, which form the basis of what we perceive as reality.

Noumenal-Phenomenal and 브라만마야 Distinctions

에서 Advaita3 view of reality, what we perceive is merely an illusion-마야. Advaita explicitly renounces the notion that the perceived reality is external or indeed real. It teaches us that the phenomenal universe, our conscious awareness of it, and our bodily being are all an illusion or 마야. They are not the true, absolute reality. The absolute reality existing in itself, independent of us and our experiences, 이다 브라만.

A similar view of reality is echoed in phenomenalism,4 which holds that space and time are not objective realities. 그들은 단지 우리의 인식의 중간. 이보기에서, all the phenomena that happen in space and time are merely bundles of our perception. Space and time are also cognitive constructs arising from perception. 따라서, the reasons behind all the physical properties that we ascribe to space and time have to be sought in the sensory processes that create our perception, whether we approach the issue from the Advaita or phenomenalism perspective.

This analysis of the importance of light in our reality naturally brings in the metaphysical aspects of space and time. In Kant’s view,5 space and time are pure forms of intuition. They do not arise from our experience because our experiences presuppose the existence of space and time. 따라서, we can represent space and time in the absence of objects, but we cannot represent objects in the absence of space and time.

Kant’s middle-ground has the advantage of reconciling the views of Newton and Leibniz. It can agree with Newton’s view6 that space is absolute and real for phenomenal objects open to scientific investigation. It can also sit well with Leibniz’s view7 that space is not absolute and has an existence only in relation to objects, by highlighting their relational nature, not among objects in themselves (noumenal objects), but between observers and objects.

We can roughly equate the noumenal objects to forms in 브라만 and our perception of them to 마야. 이 글에서, we will use the terms “noumenal reality,” “absolute reality,” 또는 “실제 현실” interchangeably to describe the collection of noumenal objects, their properties and interactions, which are thought to be the underlying causes of our perception. 마찬가지로, we will “phenomenal reality,” “perceived or sensed reality,” 및 “perceptual reality” to signify our reality as we perceive it.

As with 브라만 causing 마야, we assume that the phenomenal notions of space and time arise from noumenal causes8 through our sensory and cognitive processes. Note that this causality assumption is ad-hoc; there is no a priori reason for phenomenal reality to have a cause, nor is causation a necessary feature of the noumenal reality. Despite this difficulty, we proceed from a naive model for the noumenal reality and show that, through the process of perception, 우리는 할 수 “유도” a phenomenal reality that obeys the special theory of relativity.

This attempt to go from the phenomena (시공간) to the essence of what we experience (a model for noumenal reality) is roughly in line with Husserl’s transcendental phenomenology.9 The deviation is that we are more interested in the manifestations of the model in the phenomenal reality itself rather than the validity of the model for the essence. Through this study, we show that the specialness of the speed of light in our phenomenal space and time is a consequence of our perceptual apparatus. It doesn’t have to be an input postulate to the special theory of relativity.

Perception and Phenomenal Reality

The properties we ascribe to space and time (such as the specialness of the speed of light) can only be a part of our perceived reality or 마야, 에서 Advaita, not of the underlying absolute reality, 브라만. If we think of space and time as aspects of our perceived reality arising from an unknowable 브라만 through our sensory and cognitive processes, we can find an explanation for the special distinction of the speed of light in the process and mechanism of our sensing. Our thesis is that the reason for the specialness of light in our phenomenal notions of space and time is hidden in the process of our perception.

우리, 따라서, study how the noumenal objects around us generate our sensory signals, and how we construct our phenomenal reality out of these signals in our brains. The first part is already troublesome because noumenal objects, 정의에 의해, have no properties or interactions that we can study or understand.

These features of the noumenal reality are identical to the notion of 브라만 에서 Advaita, which highlights that the ultimate truth is 브라만, the one beyond time, space and causation. 브라만 is the material cause of the universe, but it transcends the cosmos. It transcends time; it exists in the past, present and future. It transcends space; it has no beginning, middle and end. It even transcends causality. 그 때문에, 브라만 is incomprehensible to the human mind. The way it manifests to us is through our sensory and cognitive processes. This manifestation is 마야, the illusion, 하는, in the phenomenalistic parlance, corresponds to the phenomenal reality.

For our purpose in this article, we describe our sensory and cognitive process and the creation of the phenomenal reality or 마야10 as follows. It starts with the noumenal objects (or forms in 브라만), which generate the inputs to our senses. Our senses then process the signals and relay the processed electric data corresponding to them to our brain. The brain creates a cognitive model, a representation of the sensory inputs, and presents it to our conscious awareness as reality, which is our phenomenal world or 마야.

This description of how the phenomenal reality created ushers in a tricky philosophical question. Who or what creates the phenomenal reality and where? It is not created by our senses, brain and mind because these are all objects or forms in the phenomenal reality. The phenomenal reality cannot create itself. It cannot be that the noumenal reality creates the phenomenal reality because, in that case, it would be inaccurate to assert the cognitive inaccessibility to the noumenal world.

This philosophical trouble is identical in Advaita 뿐만 아니라. Our senses, brain and mind cannot create 마야, because they are all part of 마야. 면 브라만 created 마야, it would have to be just as real. This philosophical quandary can be circumvented in the following way. We assume that all events and objects in 마야 have a cause or form in 브라만 or in the noumenal world. 따라서, we postulate that our senses, mind and body all have some (unknown) forms in 브라만 (or in the noumenal world), and these forms create 마야 in our conscious awareness, ignoring the fact that our consciousness itself is an illusory manifestation in the phenomenal world. This inconsistency is not material to our exploration into the nature of space and time because we are seeking the reason for the specialness of light in the sensory process rather than at the level of consciousness.

Space and time together form what physics considers the basis of reality. Space makes up our visual reality precisely as sounds make up our auditory world. Just as sounds are a perceptual experience rather than a fundamental property of physical reality, space also is an experience, or a cognitive representation of the visual inputs, not a fundamental aspect of 브라만 or the noumenal reality. The phenomenal reality thus created is 마야. The 마야 events are an imperfect or distorted representation of the corresponding 브라만 events. 이후 브라만 is a superset of 마야 (또는, equivalently, our senses are potentially incapable of sensing all aspects of the noumenal reality), not all objects and events in 브라만 create a projection in 마야. Our perception (또는 마야) is thus limited because of the sense modality and its speed, which form the focus of our investigation in this article.

In summary, it can be argued that the noumenal-phenomenal distinction in phenomenalism is an exact parallel to the 브라만마야 의 구별 Advaita if we think of our perceived reality (또는 마야) as arising from sensory and cognitive processes.

Sensing Space and Time, and the Role of Light

The phenomenal notions of space and time together form what physics considers the basis of reality. Since we take the position that space and time are the end results of our sensory perception, we can understand some of the limitations in our 마야 by studying the limitations in our senses themselves.

At a fundamental level, how do our senses work? Our sense of sight operates using light, and the fundamental interaction involved in sight falls in the electromagnetic (EM) category because light (or photon) is the intermediary of EM interactions.11

The exclusivity of EM interaction is not limited to our long-range sense of sight; all the short-range senses (touch, taste, smell and hearing) are also EM in nature. 물리학에서, the fundamental interactions are modeled as fields with gauge bosons.12 In quantum electrodynamics13 (the quantum field theory of EM interactions), photon (or light) is the gauge boson mediating EM interactions. Electromagnetic interactions are responsible for all our sensory inputs. To understand the limitations of our perception of space, we need not highlight the EM nature of all our senses. Space is, 전반적으로, the result of our sight sense. But it is worthwhile to keep in mind that we would have no sensing, and indeed no reality, in the absence of EM interactions.

Like our senses, all our technological extensions to our senses (such as radio telescopes, electron microscopes, red shift measurements and even gravitational lensing) use EM interactions exclusively to measure our universe. 따라서, we cannot escape the basic constraints of our perception even when we use modern instruments. The Hubble telescope may see a billion light years farther than our naked eyes, 그러나 그것은 보는 것은 여전히​​ 우리의 눈이 볼보다 억년 나이가. Our phenomenal reality, whether built upon direct sensory inputs or technologically enhanced, is made up of a subset of EM particles and interactions only. What we perceive as reality is a subset of forms and events in the noumenal world corresponding to EM interactions, filtered through our sensory and cognitive processes. 에서 Advaita parlance, 마야 can be thought of as a projection of 브라만 through EM interactions into our sensory and cognitive space, quite probably an imperfect projection.

The exclusivity of EM interactions in our perceived reality is not always appreciated, mainly because of a misconception that we can sense gravity directly. This confusion arises because our bodies are subject to gravity. There is a fine distinction between “being subject to” 및 “being able to sense” gravitational force. The gravity sensing in our ears measures the effect of gravity on EM matter. In the absence of EM interaction, it is impossible to sense gravity, or anything else for that matter.

This assertion that there is no sensing in the absence of EM interactions brings us to the next philosophical hurdle. One can always argue that, in the absence of EM interaction, there is no matter to sense. This argument is tantamount to insisting that the noumenal world consists of only those forms and events that give rise to EM interaction in our phenomenal perception. 환언, it is the same as insisting that 브라만 is made up of only EM interactions. What is lacking in the absence of EM interaction is only our phenomenal reality. 에서 Advaita notion, in the absence of sensing, 마야 does not exist. The absolute reality or 브라만, 그러나, is independent of our sensing it. 다시, we see that the Eastern and Western views on reality we explored in this article are remarkably similar.

The Speed of Light

Knowing that our space-time is a representation of the light waves our eyes receive, we can immediately see that light is indeed special in our reality. In our view, sensory perception leads to our brain’s representation that we call reality, 또는 마야. Any limitation in this chain of sensing leads to a corresponding limitation in our phenomenal reality.

One limitation in the chain from senses to perception is the finite speed of photon, which is the gauge boson of our senses. The finite speed of the sense modality influences and distorts our perception of motion, 시공간. Because these distortions are perceived as a part of our reality itself, the root cause of the distortion becomes a fundamental property of our reality. This is how the speed of light becomes such an important constant in our space-time.

The importance of the speed of light, 그러나, is respected only in our phenomenal 마야. Other modes of perception have other speeds the figure as the fundamental constant in their space-like perception. The reality sensed through echolocation, 예를 들어, has the speed of sound as a fundamental property. 사실, it is fairly simple to establish14 that echolocation results in a perception of motion that obeys something very similar to special relativity with the speed of light replaced with that of sound.

Theories beyond Sensory Limits

The basis of physics is the world view called scientific realism, which is not only at the core of sciences but is our natural way of looking at the world as well. Scientific realism, and hence physics, assume an independently existing external world, whose structures are knowable through scientific investigations. To the extent observations are based on perception, the philosophical stance of scientific realism, as it is practiced today, can be thought of as a trust in our perceived reality, and as an assumption that it is this reality that needs to be explored in science.

Physics extends its reach beyond perception or 마야 through the rational element of pure theory. Most of physics works in this “extended” intellectual reality, with concepts such as fields, forces, light rays, 원자, 입자, 등, the existence of which is insisted upon through the metaphysical commitment implied in scientific realism. 그러나, it does not claim that the rational extensions are the noumenal causes or 브라만 giving raise to our phenomenal perception.

Scientific realism has helped physics tremendously, with all its classical theories. 그러나, scientific realism and the trust in our perception of reality should apply only within the useful ranges of our senses. Within the ranges of our sensory perceptions, we have fairly intuitive physics. An example of an intuitive picture is Newtonian mechanics that describe “표준” objects moving around at “표준” speeds.

When we get closer to the edges of our sensory modalities, we have to modify our sciences to describe the reality as we sense it. These modifications lead to different, and possibly incompatible, theories. When we ascribe the natural limitations of our senses and the consequent limitations of our perception (and therefore observations) to the fundamental nature of reality itself, we end up introducing complications in our physical laws. Depending on which limitations we are incorporating into the theory (e.g., small size, large speeds etc.), we may end up with theories that are incompatible with each other.

Our argument is that some of these complications (및, 희망, incompatibilities) can be avoided if we address the sensory limitations directly. 예를 들면, we can study the consequence of the fact that our senses operate at the speed of light as follows. We can model 브라만 (the noumenal reality) as obeying classical mechanics, and work out what kind of 마야 (phenomenal reality) we will experience through the chain of sensing.

The modeling of the noumenal world (as obeying classical mechanics), 물론, has shaky philosophical foundations. But the phenomenal reality predicted from this model is remarkably close to the reality we do perceive. Starting from this simple model, it can be easily shown our perception of motion at high speeds obeys special relativity.

The effects due to the finite speed of light are well known in physics. 우리는 알고있다, 예를 들어, that what we see happening in distant stars and galaxies now actually took place quite awhile ago. A more “advanced” effect due to the light travel time15 is the way we perceive motion at high speeds, which is the basis of special relativity. 사실, many astrophysical phenomena can be understood16 in terms of light travel time effects. Because our sense modality is based on light, our sensed picture of motion has the speed of light appearing naturally in the equations describing it. So the importance of the speed of light in our space-time (as described in special relativity) is due to the fact that our reality is 마야 created based on light inputs.

Conclusion

Almost all branches of philosophy grapple with this distinction between the phenomenal and the absolute realities to some extent. Advaita Vedanta holds the unrealness of the phenomenal reality as the basis of their world view. 이 글에서, we showed that the views in phenomenalism can be thought of as a restatement of the Advaita postulates.

When such a spiritual or philosophical insight makes its way into science, great advances in our understanding can be expected. This convergence of philosophy (or even spirituality) and science is beginning to take place, most notably in neuroscience, which views reality as a creation of our brain, echoing the notion of 마야.

Science gives a false impression that we can get arbitrarily close to the underlying physical causes through the process of scientific investigation and rational theorization. An example of such theorization can be found in our sensation of hearing. The experience or the sensation of sound is an incredibly distant representation of the physical cause–namely air pressure waves. We are aware of the physical cause because we have a more powerful sight sense. So it would seem that we can indeed go from 마야 (소리) to the underlying causes (air pressure waves).

그러나, it is a fallacy to assume that the physical cause (the air pressure waves) 이다 브라만. Air pressure waves are still a part of our perception; they are part of the intellectual picture we have come to accept. This intellectual picture is an extension of our visual reality, based on our trust in the visual reality. It is still a part of 마야.

The new extension of reality proposed in this article, again an intellectual extension, is an educated guess. We guess a model for the absolute reality, 또는 브라만, and predict what the consequent perceived reality should be, working forward through the chain of sensing and creating 마야. If the predicted perception is a good match with the 마야 we do experience, then the guesswork for 브라만 is taken to be a fairly accurate working model. The consistency between the predicted perception and what we do perceive is the only validation of the model for the nature of the absolute reality. 게다가, the guess is only one plausible model for the absolute reality; there may be different such “solutions” to the absolute reality all of which end up giving us our perceived reality.

It is a mistake to think of the qualities of our subjective experience of sound as the properties of the underlying physical process. In an exact parallel, it is a fallacy to assume that the subjective experience of space and time is the fundamental property of the world we live in. The space-time continuum, as we see it or feel it, is only a partial and incomplete representation of the unknowable 브라만. If we are willing to model the unknowable 브라만 as obeying classical mechanics, we can indeed derive the properties of our perceived reality (such as time dilation, length contraction, light speed ceiling and so on in special relativity). By proposing this model for the noumenal world, we are not suggesting that all the effects of special relativity are mere perceptual artifacts. We are merely reiterating a known fact that space and time themselves cannot be anything but perceptual constructs. Thus their properties are manifestations of the process of perception.

When we consider processes close to or beyond our sensor limits, the manifestations of our perceptual and cognitive constraints become significant. 따라서, when it comes to the physics that describes such processes, we really have to take into account the role that our perception and cognition play in sensing them. The universe as we see it is only a cognitive model created out of the photons falling on our retina or on the photosensors of the Hubble telescope. 때문에 정보 매체의 한정된 속도 (namely light), our perception is distorted in such a way as to give us the impression that space and time obey special relativity. 그들은 할, but space and time are only a part of our perception of an unknowable reality—a perception limited by the speed of light.

The central role of light in creating our reality or universe is at the heart of western spiritual philosophy as well. 빛의없는 우주는 당신이 불을 전환 한 단순히 세계 아니다. 그것은 참 자체가없는 우주이다, 존재하지 않는 우주. It is in this context that we have to understand the wisdom behind the notion that “지구는 양식 선수, and void'” 하나님이 발생 될 때까지 빛이 될, 말에 의해 “빛이 있으라.” Quran also says, “Allah is the light of the heavens.” The role of light in taking us from the void (무) to a reality was understood for a long, 오랜 시간. Is it possible that the ancient saints and prophets knew things that we are only now beginning to uncover with all our advances in knowledge? Whether we use old Eastern Advaita views or their Western counterparts, we can interpret the philosophical stance behind special relativity as hidden in the distinction between our phenomenal reality and its unknowable physical causes.

참조

  1. 박사. Manoj Thulasidas graduated from the Indian Institute of Technology (IIT), 마드라스, 에서 1987. He studied fundamental particles and interactions at the CLEO collaboration at Cornell University during 1990-1992. After receiving his PhD in 1993, he moved to Marseilles, France and continued his research with the ALEPH collaboration at CERN, 제네바. During his ten-year career as a research scientist in the field of High energy physics, 그는 이상 공저 200 출판물.
  2. 아인슈타인, A. (1905). Zur Elektrodynamik bewegter Körper. (On The Electrodynamics Of Moving Bodies). 물리학 연보, 17, 891-921.
  3. Radhakrishnan, 에스. & Moore, C. A. (1957). Source Book in Indian Philosophy. Princeton University Press, Princeton, NY.
  4. Chisolm, R. (1948). The Problem of Empiricism. The Journal of Philosophy, 45, 512-517.
  5. Allison, H. (2004). Kant’s Transcendental Idealism. Yale University Press.
  6. Rynasiewicz, R. (1995). By Their Properties, Causes and Effects: Newton’s Scholium on Time, 공간, Place and Motion. Studies in History and Philosophy of Science, 26, 133-153, 295-321.
  7. Calkins, M. W. (1897). Kant’s Conception of the Leibniz Space and Time Doctrine. The Philosophical Review, 6 (4), 356-369.
  8. Janaway, C., ed. (1999). The Cambridge Companion to Schopenhauer. Cambridge University Press.
  9. Schmitt, R. (1959). Husserl’s Transcendental-Phenomenological Reduction. Philosophy and Phenomenological Research, 20 (2), 238-245.
  10. Thulasidas, M. (2007). 언리얼 우주. Asian Books, 싱가포르.
  11. Electromagnetic (EM) interaction is one of the four kinds of interactions in the Standard Model (Griffths, 1987) of particle physics. It is the interaction between charged bodies. Despite the EM repulsion between them, 그러나, the protons stay confined within the nucleus because of the strong interaction, whose magnitude is much bigger than that of EM interactions. The other two interactions are termed the weak interaction and the gravitational interaction.
  12. In quantum field theory, every fundamental interaction consists of emitting a particle and absorbing it in an instant. These so-called virtual particles emitted and absorbed are known as the gauge bosons that mediate the interactions.
  13. 파인만, R. (1985). Quantum Electrodynamics. Addison Wesley.
  14. Thulasidas, M. (2007). 언리얼 우주. Asian Books, 싱가포르.
  15. 리스, M. (1966). Appearance of Relativistically Expanding Radio Sources. 자연, 211, 468-470.
  16. Thulasidas, M. (2007a). 라디오 소스 및 감마선 버스트 내강 붐인가? International Journal of Modern Physics D, 16 (6), 983-1000.