Archivo de la etiqueta: espacio y el tiempo

What Does it Feel Like to be a Bat?

It is a sensible question: What does it feel like to be a bat? Although we can never really know the answer (because we can never be bats), we know that there is an answer. It feels like something to be a bat. Bueno, at least we think it does. We think bats have conciencia and conscious feelings. Por otra parte, it is not a sensible question to ask what it feels like to be brick or a table. It doesn’t feel like anything to be an inanimate object.

Seguir leyendo

Que es Unreal Blog,en?

Tell us a little about why you started your blog, and what keeps you motivated about it.

As my writings started appearing in different magazines and newspapers as regular columns, I wanted to collect them in one placeas an anthology of the internet kind, por decirlo así. That’s how my blog was born. The motivation to continue blogging comes from the memory of how my first book, El universo Unreal, took shape out of the random notes I started writing on scrap books. I believe the ideas that cross anybody’s mind often get forgotten and lost unless they are written down. A blog is a convenient platform to put them down. Y, since the blog is rather public, you take some care and effort to express yourself well.

Do you have any plans for the blog in the future?

I will keep blogging, roughly at the rate of one post a week or so. I don’t have any big plans for the blog per se, but I do have some other Internet ideas that may spring from my blog.

Philosophy is usually seen as a very high concept, intellectual subject. Do you think that it can have a greater impact in the world at large?

This is a question that troubled me for a while. And I wrote a post on it, which may answer it to the best of my ability. To repeat myself a bit, philosophy is merely a description of whatever intellectual pursuits that we indulge in. It is just that we don’t often see it that way. Por ejemplo, if you are doing physics, you think that you are quite far removed from philosophy. The philosophical spins that you put on a theory in physics is mostly an afterthought, it is believed. But there are instances where you can actually apply philosophy to solve problems in physics, and come up with new theories. This indeed is the theme of my book, El universo Unreal. It asks the question, if some object flew by faster than the speed of light, what would it look like? With the recent discovery that solid matter does travel faster than light, I feel vindicated and look forward to further developments in physics.

Do you think many college students are attracted to philosophy? What would make them choose to major in it?

En el mundo de hoy, I am afraid philosophy is supremely irrelevant. So it may be difficult to get our youngsters interested in philosophy. I feel that one can hope to improve its relevance by pointing out the interconnections between whatever it is that we do and the intellectual aspects behind it. Would that make them choose to major in it? In a world driven by excesses, it may not be enough. Entonces de nuevo, it is world where articulation is often mistaken for accomplishments. Perhaps philosophy can help you articulate better, sound really cool and impress that girl you have been afterto put it crudely.

More seriously, aunque, what I said about the irrelevance of philosophy can be said about, decir, physics as well, despite the fact that it gives you computers and iPads. Por ejemplo, when Copernicus came up with the notion that the earth is revolving around the sun rather than the other way round, profound though this revelation was, in what way did it change our daily life? Do you really have to know this piece of information to live your life? This irrelevance of such profound facts and theories bothered scientists like Richard Feynman.

What kind of advice or recommendations would you give to someone who is interested in philosophy, and who would like to start learning more about it?

I started my path toward philosophy via physics. I think philosophy by itself is too detached from anything else that you cannot really start with it. You have to find your way toward it from whatever your work entails, and then expand from there. Al menos, that’s how I did it, and that way made it very real. When you ask yourself a question like what is space (so that you can understand what it means to say that space contracts, por ejemplo), the answers you get are very relevant. They are not some philosophical gibberish. I think similar paths to relevance exist in all fields. See for example how Pirsig brought out the notion of quality in his work, not as an abstract definition, but as an all-consuming (and eventually dangerous) obsession.

En mi opinión, philosophy is a wrapper around multiple silos of human endeavor. It helps you see the links among seemingly unrelated fields, tal como cognitive neuroscience and special relativity. Of what practical use is this knowledge, I cannot tell you. Entonces de nuevo, of what practical use is life itself?

Only a Matter of Time

Although we speak of space and time in the same breath, they are quite different in many ways. Space is something we perceive all around us. We see it (más bien, objects in it), we can move our hand through it, and we know that if our knee tries to occupy the same space as, decir, the coffee table, it is going to hurt. En otras palabras, we have sensory correlates to our notion of space, starting from our most precious sense of sight.

Time, Por otra parte, has no direct sensory backing. And for this reason, it becomes quite difficult to get a grip over it. ¿Cuál es el tiempo? We sense it indirectly through change and motion. But it would be silly to define time using the concepts of change and motion, because they already include the notion of time. The definition would be cyclic.

Assuming, for now, that no definition is necessary, let’s try another perhaps more tractable issue. Where does this strong sense of time come from? I once postulated that it comes from our knowledge of our demise — that questionable gift that we all possess. All the time durations that we are aware of are measured against the yardstick of our lifespan, perhaps not always consciously. I now wonder if this postulate is firm enough, and further ruminations on this issue have convinced me that I am quite ignorant of these things and need more knowledge. Ah.. only if I had more time. 🙂

En todo caso, even this more restricted question of the origin of time doesn’t seem to be that tractable, después de todo. Physics has another deep problem with time. It has to do with the directionality. It cannot easily explain why time has a direction — an arrow, por decirlo así. This arrow does not present itself in the fundamental laws governing physical interactions. All the laws in physics are time reversible. The laws of gravity, electromagnetism or quantum mechanics are all invariant with respect to a time reversal. Es decir, they look the same with time going forward or backward. So they give no clue as to why we experience the arrow of time.

Sin embargo,, we know that time, as we experience it, is directional. We can remember the past, but not the future. What we do now can affect the future, but not the past. If we play a video tape backwards, the sequence of events (like broken pieces of glass coming together to for a vase) will look funny to us. Sin embargo, if we taped the motion of the planets in a solar system, or the electron cloud in an atom, and played it backward to a physicist, he would not find anything funny in the sequences because the physical laws are reversible.

Physics considers the arrow of time an emergent property of statistical collections. To illustrate this thermodynamic explanation of time, let’s consider an empty container where we place some dry ice. After some time, we expect to see a uniform distribution of carbon dioxide gas in the container. Once spread out, we do not expect the gas in the container to coagulate into solid dry ice, no matter how long we wait. The video of CO2 spreading uniformly in the container is a natural one. Played backward, the sequence of the CO2 gas in the container congealing to solid dry ice in a corner would not look natural to us because it violates our sense of the arrow of time.

The apparent uniformity of CO2 in the container is due to the statistically significant quantity of dry ice we placed there. If we manage to put a small quantity, say five molecules of CO2, we can fully expect to see the congregation of the molecules in one location once in a while. Así, the arrow of time manifests itself as a statistical or thermodynamic property. Although the directionality of time seems to emerge from reversible physical laws, its absence in the fundamental laws does look less than satisfactory philosophically.

La mitad de un cubo de agua

Todos vemos y sentimos el espacio, pero ¿qué es lo que realmente? El espacio es una de esas cosas fundamentales que un filósofo puede considerar un “intuición.” Cuando los filósofos miran nada, consiguen un poco técnico. Es relacional espacio, como en, se define en términos de las relaciones entre los objetos? Una entidad relacional es como su familia — usted tiene sus padres, hermanos, cónyuge, niños, etc.. formando lo que se tiene en cuenta a su familia. Pero su familia en sí misma no es una entidad física, pero sólo una colección de relaciones. ¿Hay espacio también algo así? ¿O es más bien como un contenedor físico donde residen los objetos y hacer su cosa?

Usted puede considerar la distinción entre los dos sólo otro de esos hairsplittings filosóficas, pero en realidad no lo es. ¿Qué es el espacio, e incluso qué tipo de entidad es el espacio, tiene enormes implicaciones en la física. Por ejemplo, si es relacional en la naturaleza, a continuación, en ausencia de la materia, no hay espacio. Al igual que en la ausencia de algún miembro de la familia, usted no tiene familia. Por otra parte, si se trata de una entidad de depósito como, el espacio existe, incluso si le quitas toda la materia, a la espera de algún asunto que aparezca.

Así que lo que, usted pregunta? Bueno, vamos a tomar la mitad de un cubo de agua y girar alrededor. Una vez que el agua dentro de las capturas en, su superficie se forma una forma parabólica — ya sabes, la fuerza centrífuga, gravedad, tensión superficial y todo lo que. Ahora, detener el cubo, y girar todo el universo a su alrededor en lugar. Lo sé, es más difícil. Pero imagine usted lo está haciendo. ¿La superficie del agua ser parabólico? Creo que va a ser, porque no hay mucha diferencia entre el giro de cubo o de todo el universo girando alrededor de ella.

Ahora, imaginemos que vaciamos el universo. No hay nada, pero este medio llena de cubo. Ahora que gira en torno a. ¿Qué sucede con la superficie del agua? Si el espacio es relacional, en ausencia del universo, no hay espacio fuera de la cubeta y no hay manera de saber que está girando. El agua de superficie debe ser plana. (De hecho, debe ser esférica, pero ignorar eso por un segundo.) Y si hay espacio-contenedor como, el cubo de hilado debería resultar en una superficie parabólica.

Por supuesto, no tenemos forma de saber en qué dirección va a ser porque no tenemos manera de vaciar el universo y girar un cubo. Pero eso no nos impide adivinar la naturaleza de las teorías espaciales y la construcción basado en él. Espacio de Newton es-contenedor como, mientras que en su corazón, Las teorías de Einstein tienen una noción relacional del espacio.

Así, Lo ves, filosofía sí importa.

¿Por qué la velocidad de la luz?

What is so special about light that its speed should figure in the basic structure of space and time and our reality? This is the question that has nagged many scientists ever since Albert Einstein published On the Electrodynamics of Moving Bodies about 100 years ago.

In order to understand the specialness of light in our space and time, we need to study how we perceive the world around us and how reality is created in our brains. We perceive our world using our senses. The sensory signals that our senses collect are then relayed to our brains. The brain creates a cognitive model, a representation of the sensory inputs, and presents it to our conscious awareness as reality. Our visual reality consists of space much like our auditory world is made up of sounds.

Just as sounds are a perceptual experience rather than a fundamental property of the physical reality, space also is an experience, or a cognitive representation of the visual inputs, not a fundamental aspect of “the world” our senses are trying to sense.

Space and time together form what physics considers the basis of reality. The only way we can understand the limitations in our reality is by studying the limitations in our senses themselves.

At a fundamental level, how do our senses work? Our sense of sight operates using light, and the fundamental interaction involved in sight falls in the electromagnetic (EM) category because light (or photon) is the intermediary of EM interactions. The exclusivity of EM interaction is not limited to our the long range sense of sight; all the short range senses (toque, taste, smell and hearing) are also EM in nature. To understand the limitations of our perception of space, we need not highlight the EM nature of all our senses. Space is, en gran, the result of our sight sense. But it is worthwhile to keep in mind that we would have no sensing, and indeed no reality, in the absence of EM interactions.

Like our senses, all our technological extensions to our senses (such as radio telescopes, electron microscopes, redshift measurements and even gravitational lensing) use EM interactions exclusively to measure our universe. Así, we cannot escape the basic constraints of our perception even when we use modern instruments. The Hubble telescope may see a billion light years farther than our naked eyes, pero lo que ve es todavía un billón de años más que lo que ven nuestros ojos. Our perceived reality, whether built upon direct sensory inputs or technologically enhanced, is a subset of electromagnetic particles and interactions only. It is a projection of EM particles and interactions into our sensory and cognitive space, a possibly imperfect projection.

This statement about the exclusivity of EM interactions in our perceived reality is often met with a bit of skepticism, mainly due to a misconception that we can sense gravity directly. This confusion arises because our bodies are subject to gravity. There is a fine distinction between “being subject to” y “being able to sense” gravitational force.

This difference is illustrated by a simple thought experiment: Imagine a human subject placed in front of an object made entirely of cosmological dark matter. There is no other visible matter anywhere the subject can see it. Given that the dark matter exerts gravitational force on the subject, will he be able to sense its presence? He will be pulled toward it, but how will he know that he is being pulled or that he is moving? He can possibly design some mechanical contraption to detect the gravity of the dark matter object. But then he will be sensing the effect of gravity on some matter using EM interactions. Por ejemplo, he may be able to see his unexplained acceleration (effect of gravity on his body, which is EM matter) with respect to reference objects such as stars. But the sensing part here (seeing the stars) involves EM interactions.

It is impossible to design any mechanical contraption to detect gravity that is devoid of EM matter. The gravity sensing in our ears again measures the effect of gravity on EM matter. In the absence of EM interaction, it is impossible to sense gravity, or anything else for that matter.

Electromagnetic interactions are responsible for our sensory inputs. Sensory perception leads to our brain’s representation that we call reality. Any limitation in this chain leads to a corresponding limitation in our sense of reality. One limitation in the chain from senses to reality is the finite speed of photon, which is the gauge boson of our senses. The finite speed of the sense modality influences and distorts our perception of motion, espacio y el tiempo. Because these distortions are perceived as a part of our reality itself, the root cause of the distortion becomes a fundamental property of our reality. This is how the speed of light becomes such an important constant in our space time. The sanctity of light is respected only in our perceived reality.

If we trust the imperfect perception and try to describe what we sense at cosmological scales, we end up with views of the world such as the big bang theory in modern cosmology and the general and special theories of relativity. These theories are not wrong, and the purpose of this book is not to prove them wrong, just to point out that they are descriptions of a perceived reality. They do not describe the physical causes behind the sensory inputs. The physical causes belong to an absolute reality beyond our senses.

The distinction between the absolute reality and our perception of it can be further developed and applied to certain specific astrophysical y cosmological phenomena. When it comes to the physics that happens well beyond our sensory ranges, que realmente tenemos que tener en cuenta el papel que nuestra percepción y la cognición en juego verlos. The universe as we see it is only a cognitive model created out of the photons falling on our retina or on the photo sensors of the Hubble telescope. Debido a la velocidad finita del soporte de información (es decir, los fotones), our perception is distorted in such a way as to give us the impression that space and time obey special relativity. Hacen, pero el espacio y el tiempo no son la realidad absoluta. They are only a part of the universo irreal that is our perception of an unknowable reality.

[This again is an edited excerpt from my book, El universo Unreal.]

¿Qué es el Espacio?

Esto suena como una pregunta extraña. Todos sabemos lo que es el espacio, que está a nuestro alrededor. Cuando abrimos los ojos, lo vemos. Si ver es creer, entonces la pregunta “¿Cuál es el espacio?” de hecho es un extraño.

Para ser justos, en realidad no vemos espacio. Vemos sólo los objetos que suponemos están en el espacio. En lugar, definimos el espacio como lo que sea que tenga o contiene los objetos. Es el ámbito donde los objetos hagan lo suyo, el telón de fondo de nuestra experiencia. En otras palabras, experiencia presupone espacio y el tiempo, y proporciona la base para la visión del mundo detrás de las interpretaciones actualmente populares de las teorías científicas.

Aunque no es evidente, esta definición (o asunción o entendimiento) del espacio viene con un bagaje filosófico — que de realismo. La opinión del realista es predominante en la comprensión actual de las teorías de Einstien así. Pero el propio Einstein pudo no haber abrazado el realismo ciegamente. ¿Por qué si no iba a decir:

Con el fin de romper con la empuñadura de realismo, tenemos que abordar la cuestión de forma tangencial. Una forma de hacerlo es mediante el estudio de la neurociencia y la base cognitiva de la vista, que después de todo proporciona la evidencia más fuerte de lo real del espacio. Espacio, en gran, es la experiencia asociada a la vista. Otra forma es examinar correlatos experienciales de otros sentidos: ¿Cuál es el sonido?

Cuando escuchamos algo, lo que escuchamos es, naturalmente, sonar. Experimentamos un tono, una intensidad y una variación en el tiempo que nos dicen mucho acerca de quién está hablando, lo que está rompiendo y así sucesivamente. Pero incluso después de despojarse de toda la riqueza extra añadido a la experiencia de nuestro cerebro, la experiencia más básico sigue siendo una “sonar.” Todos sabemos lo que es, pero no podemos explicarlo en términos más básicos que.

Ahora echemos un vistazo a la señal sensorial responsable de la audición. Como la conocemos, estos son ondas de presión en el aire que se crean por un cuerpo vibrante hacer compresiones y depresiones en el aire a su alrededor. Al igual que las ondas en un estanque, estas ondas de presión se propagan en casi todas las direcciones. Ellos son recogidos por nuestros oídos. Por un mecanismo inteligente, los oídos realizar un análisis espectral y envían señales eléctricas, los cuales aproximadamente corresponden al espectro de frecuencia de las ondas, a nuestro cerebro. Tenga en cuenta que, hasta el momento, tenemos un cuerpo vibrante, agrupamiento y la difusión de moléculas de aire, y una señal eléctrica que contiene información sobre el patrón de las moléculas de aire. No tenemos todavía el sonido.

La experiencia de sonido es la magia de nuestro cerebro realiza. Se traduce la señal eléctrica que codifica los patrones de ondas de presión de aire a una representación de la tonalidad y la riqueza de sonido. El sonido no es la propiedad intrínseca de un cuerpo vibrante o caída de un árbol, es la forma en que nuestro cerebro elige para representar a las vibraciones o, más precisamente, la señal eléctrica que codifica el espectro de las ondas de presión.

¿No tiene sentido llamar a sonar una representación cognitiva interna de nuestras entradas sensoriales auditivas? Si estas de acuerdo, a continuación, la realidad misma es nuestra representación interna de nuestras entradas sensoriales. Esta noción es en realidad mucho más profunda que aparece por primera vez. Si el sonido es una representación, por lo que es olor. Así es espacio.

Figure
Figura: Ilustración del proceso de representación del cerebro de los estímulos sensoriales. Los olores son una representación de las composiciones químicas y niveles de concentración nuestros sentidos nariz. Los sonidos son un mapeo de las ondas de presión de aire producidas por un objeto vibrante. En la vista, nuestra representación espacio, y posiblemente el tiempo. Sin embargo, no sabemos lo que es la representación de.

Podemos examinar y comprender plenamente el sonido debido a un hecho notable — tenemos un sentido más potente, es decir, nuestra vista. La vista nos permite comprender las señales sensoriales de la audición y compararlos con nuestra experiencia sensorial. En efecto, la vista nos permite hacer un modelo que describe qué es el sonido.

¿Por qué es que no sabemos la causa física detrás de espacio? Después de todo, sabemos de las causas detrás de las experiencias de olor, sonar, etc. La razón de nuestra incapacidad de ver más allá de la realidad visual está en la jerarquía de los sentidos, se ilustra mejor con un ejemplo. Vamos a considerar una pequeña explosión, como un petardo de apagarse. Cuando experimentamos esta explosión, veremos el flash, escuchar el informe, oler los productos químicos que queman y sentir el calor, si somos lo suficientemente cerca.

Los qualia de estas experiencias se atribuyen a la misma evento físico — La explosión, la física de la que se conoce bien. Ahora, vamos a ver si podemos engañar a los sentidos a tener las mismas experiencias, en ausencia de una verdadera explosión. El calor y el olor son bastante fáciles de reproducir. La experiencia del sonido también se puede crear utilizando, por ejemplo, un sistema de cine en casa de alta gama. ¿Cómo nos recreamos la experiencia de la visión de la explosión? Una experiencia de cine en casa es una mala reproducción de lo real.

En principio, al menos,, podemos pensar en escenarios futuristas como el Holideck en Star Trek, donde la experiencia de la visión puede ser recreado. Pero en el punto donde también se recrea la vista, ¿hay una diferencia entre la experiencia real de la explosión y la simulación Holideck? La confusión del sentido de la realidad, cuando la experiencia de la vista se simula indica que la vista es nuestro sentido más poderoso, y no tenemos acceso a causas más allá de nuestra realidad visual.

La percepción visual es la base de nuestro sentido de la realidad. Todos los otros sentidos proporcionan corroborar o complementar las percepciones de la realidad visual.

[Este post ha prestado un poco de mi libro.]

Viaje Light Efectos Tiempo y Características cosmológicos

Este artículo no publicado es una secuela de mi trabajo anterior (también publicado aquí como “Son fuentes de radio y explosiones de rayos gamma Luminal Plumas?“). Esta versión blog contiene el resumen, introducción y conclusiones. La versión completa del artículo está disponible como un archivo PDF.

.

Resumen

Efectos del tiempo de viaje de luz (LTT) son una manifestación óptica de la velocidad finita de la luz. También pueden considerarse limitaciones de percepción de la imagen cognitiva de espacio y tiempo. En base a esta interpretación de los efectos LTT, hemos presentado recientemente un nuevo modelo hipotético de la variación temporal y espacial del espectro de explosiones de rayos gamma (GRB) y fuentes de radio. En este artículo, tomamos el análisis más allá y muestran que los efectos LTT pueden proporcionar un buen marco para describir tales características cosmológicas como la observación de corrimiento al rojo de un universo en expansión, y la radiación del fondo cósmico de microondas. La unificación de estos fenómenos aparentemente distintas a muy diferentes escalas de longitud y tiempo, junto con su simplicidad conceptual, pueden ser considerados como indicadores de la curiosa utilidad de este marco, si no su validez.

Introducción

La velocidad finita de la luz juega un papel importante en la forma en que percibimos la distancia y velocidad. Este hecho casi no debería ser una sorpresa, ya que sabemos que las cosas no son como las vemos. El sol que vemos, por ejemplo, Ya es de ocho minutos de edad para el momento en que lo vemos. Este retraso es trivial; si queremos saber lo que está pasando en el sol ahora, todo lo que tenemos que hacer es esperar durante ocho minutos. Nosotros, sin embargo,, Tiene que “correcta” esta distorsión en nuestra percepción debido a la velocidad finita de la luz antes de que podamos confiar en lo que vemos.

Lo que es sorprendente (y rara vez resaltado) es que cuando se trata de detectar el movimiento, no podemos respaldar a calcular de la misma manera sacamos la demora en ver el sol. Si vemos un cuerpo celeste que se mueve a una improbablemente alta velocidad, no podemos averiguar qué velocidad y en qué dirección es “realmente” moviéndose sin hacer supuestos adicionales. Una forma de manejar esta dificultad es atribuir las distorsiones en nuestra percepción del movimiento de las propiedades fundamentales de la arena de la física — espacio y el tiempo. Otra línea de acción es la de aceptar la desconexión entre nuestra percepción y la subyacente “realidad” y tratar con él de alguna manera.

Explorando la segunda opción, asumimos una realidad subyacente que da origen a nuestra imagen percibida. Tenemos el modelo aún más esta realidad subyacente como obedeciendo a la mecánica clásica, y trabajar por nuestra imagen percibida a través del aparato de la percepción. En otras palabras, no atribuimos las manifestaciones de la velocidad finita de la luz a las propiedades de la realidad subyacente. En lugar, trabajamos nuestra imagen percibida que este modelo predice y verifica si las propiedades que sí observamos pueden originar de esta limitación perceptual.

Espacio, los objetos en él, y su movimiento son, en gran, el producto de la percepción óptica. Uno tiende a dar por sentado que la percepción de la realidad surge como uno percibe que. En este artículo, tomamos la posición de que lo que percibimos es una imagen incompleta o distorsionada de una realidad subyacente. Además, estamos probando la mecánica clásica de la realidad subyacente (para lo cual utilizamos términos como absoluta, la realidad noumenal o física) eso no causan nuestra percepción para ver si se ajusta a nuestra imagen percibida (que podemos referirnos a la realidad como detectado o fenomenal).

Tenga en cuenta que no estamos implicando que las manifestaciones de la percepción son meros delirios. No son; son de hecho parte de nuestra realidad detectada porque la realidad es un resultado final de la percepción. Esta percepción puede estar detrás de la famosa frase de Goethe, “Ilusión óptica es verdad óptica.”

Aplicamos esta línea de pensamiento a un problema de física recientemente. Nos fijamos en la evolución espectral de un GRB y nos pareció que es muy similar a la de un estampido sónico. Utilizando este hecho, presentamos un modelo para PSG como nuestra percepción de un “luminal” auge, en el entendido de que es nuestra imagen percibida de la realidad que obedece a la invariancia de Lorentz y nuestro modelo de la realidad subyacente (haciendo que la imagen percibida) pueda violar la física relativista. El acuerdo notable entre el modelo y las características observadas, sin embargo, extendido más allá de los GRBs a fuentes de radio simétricos, que también puede ser considerado como efectos de percepción de barreras luminales hipotéticos.

En este artículo, nos fijamos en otras implicaciones del modelo. Comenzamos con las similitudes entre el tiempo de recorrido de luz (LTT) efectos y la transformación de coordenadas en la Relatividad Especial (SR). Estas similitudes son de extrañar, porque SR se deriva en parte basado en efectos LTT. Consecuentemente, se propone una interpretación de SR como una formalización de efectos LTT y estudiamos unos fenómenos cosmológicos observados a la luz de esta interpretación.

Las similitudes entre Viaje de Luz Efectos Tiempo y SR

La relatividad especial busca una transformación de coordenadas lineal entre sistemas de coordenadas en movimiento con respecto a la otra. Podemos rastrear el origen de la linealidad a un supuesto oculto de la naturaleza del espacio y el tiempo integrado en SR, como dice Einstein: “En primer lugar está claro que las ecuaciones deben ser lineales en cuenta las propiedades de homogeneidad que atribuimos a espacio y tiempo.” Debido a esta suposición de linealidad, la derivación original de las ecuaciones de transformación ignora la asimetría entre acercamiento y retroceso de los objetos. Ambos se aproxima y los objetos que retroceden pueden ser descrito por dos sistemas que siempre se alejan unas de otras a coordinar. Por ejemplo, si un sistema K se está moviendo con respecto a otro sistema k a lo largo del eje X positivo de k, a continuación, un objeto en reposo en K en una positiva x está en retroceso, mientras que otro objeto a la negativa x se acerca a un observador en el origen de k.

La transformación de coordenadas en el artículo original de Einstein se deriva, en parte, una manifestación del tiempo de viaje de luz (LTT) efectos y en la imposición de la constancia de la velocidad de la luz en todos los marcos inerciales. Esto es más evidente en el primer experimento mental, donde los observadores que se mueven con una varilla encuentran sus relojes no sincronizados debido a la diferencia en los tiempos de viaje de luz a lo largo de la longitud de la varilla. Sin embargo, en la interpretación actual de SR, la transformación de coordenadas se considera una propiedad básica del espacio y el tiempo.

Una dificultad que surge de esta interpretación de SR es que la definición de la velocidad relativa entre los dos marcos de inercia se convierte en ambigua. Si se trata de la velocidad del bastidor móvil según lo medido por el observador, entonces el movimiento superluminal observado en los chorros de radio a partir de la región del núcleo se convierte en una violación de SR. Si se trata de una velocidad que hay que deducir por considerar los efectos LT, entonces tenemos que emplear el supuesto ad-hoc extra que superluminality está prohibido. Estas dificultades sugieren que puede ser mejor para separar la luz de los efectos del tiempo de viaje desde el resto de SR.

En esta sección, vamos a considerar el espacio y el tiempo como una parte del modelo cognitivo creado por el cerebro, y argumentan que la relatividad especial se aplica al modelo cognitivo. La realidad absoluta (de los cuales el SR-como el espacio-tiempo es nuestra percepción) no tiene que obedecer las restricciones de SR. En particular, objetos no se limitan a velocidades subluminal, pero pueden aparecer a nosotros como si se limitan a velocidades subluminal en nuestra percepción del espacio y el tiempo. Si separamos los efectos LTT del resto de SR, podemos comprender una amplia variedad de fenómenos, como veremos en este artículo.

A diferencia de SR, consideraciones basadas en efectos LTT producen intrínsecamente diferente conjunto de leyes de transformación de objetos que se aproximan a un observador y los aleja de él. Más generalmente, la transformación depende del ángulo entre la velocidad del objeto y la línea de visión del observador. Puesto que las ecuaciones de transformación basados ​​en efectos LTT tratan a acercarse y retroceso objetos asimétricamente, que proporcionan una solución natural a la paradoja de los gemelos, por ejemplo.

Conclusiones

Dado que el espacio y el tiempo son parte de una realidad creada de entradas de luz a nuestros ojos, algunas de sus propiedades son manifestaciones de efectos LTT, especialmente en nuestra percepción del movimiento. La absoluta, realidad física generando presumiblemente las entradas de luz no tiene que obedecer las propiedades que atribuimos a nuestro espacio y el tiempo percibido.

Hemos demostrado que los efectos LTT son cualitativamente idénticas a las de SR, señalando que SR sólo considera los marcos de referencia que retroceden unos de otros. Esta similitud no es sorprendente porque la transformación de coordenadas en SR se deriva parcialmente basado en efectos LTT, y en parte en el supuesto de que la luz viaja a la misma velocidad con respecto a todos los sistemas inerciales. En tratándolo como una manifestación de la LTT, que no nos dirigimos a la principal motivación de SR, que es una formulación covariante de las ecuaciones de Maxwell. Puede ser posible separar la covarianza de la electrodinámica de la transformación de coordenadas, aunque no se intenta en este artículo.

A diferencia de SR, LTT efectos son asimétricos. Esta asimetría proporciona una solución a la paradoja de los gemelos y una interpretación de las violaciónes de causalidad asumidos asociado con superluminality. Además, la percepción de superluminality es modulada por efectos LTT, y explica gamma Los estallidos de rayos y chorros simétricos. Como mostramos en el artículo, percepción del movimiento superluminal también tiene una explicación para los fenómenos cosmológicos, como la expansión de la radiación de fondo de microondas cósmico universo y. LTT efectos deben ser considerados como una limitación fundamental en nuestra percepción, y por consiguiente en la física, en lugar de como una explicación conveniente para fenómenos aislados.

Teniendo en cuenta que nuestra percepción se filtra a través de efectos LTT, tenemos que deconvolute desde nuestra realidad percibida con el fin de comprender la naturaleza de lo absoluto, realidad física. Esta deconvolución, sin embargo, resultados en múltiples soluciones. Así, la absoluta, la realidad física está más allá de nuestro alcance, y cualquier asumido propiedades de la realidad absoluta sólo pueden ser validados a través de lo bien que la resultante percibida realidad está de acuerdo con nuestras observaciones. En este artículo, asumimos que la realidad subyacente obedece nuestros mecánica clásica intuitivamente obvias y preguntamos cómo sería percibido como una realidad cuando se filtra a través de los efectos del tiempo de viaje de luz. Hemos demostrado que este tratamiento en particular podría explicar ciertos fenómenos astrofísicos y cosmológicos que observamos.

La transformación de coordenadas en SR puede ser visto como una redefinición del espacio y el tiempo (o, más generalmente, realidad) con el fin de acomodar las distorsiones en nuestra percepción de movimiento debido a los efectos del tiempo de viaje de luz. Uno puede tener la tentación de argumentar que SR se aplica a la “reales” espacio y el tiempo, no nuestra percepción. Esta línea de argumentación plantea la pregunta, lo que es real? La realidad es solamente un modelo cognitivo creada en nuestro cerebro a partir de nuestras entradas sensoriales, entradas visuales siendo el más significativo. El espacio en sí es una parte de este modelo cognitivo. Las propiedades del espacio son un mapeo de las limitaciones de nuestra percepción.

La opción de aceptar nuestra percepción como una verdadera imagen de la realidad y la redefinición del espacio y el tiempo como se describe en la relatividad especial de hecho equivale a una elección filosófica. La alternativa que se presenta en el artículo se inspira en la vista de la neurociencia moderna que la realidad es un modelo cognitivo del cerebro basado en nuestras entradas sensoriales. La adopción de esta alternativa nos reduce a adivinar la naturaleza de la realidad absoluta y comparando su proyección predicho a nuestra percepción real. Se puede simplificar y aclarar algunas teorías de la física y explicar algunos fenómenos enigmáticos en nuestro universo. Sin embargo, esta opción es otra postura filosófica contra la realidad absoluta incognoscible.

The Philosophy of Special Relativity — A Comparison between Indian and Western Interpretations

Resumen: The Western philosophical phenomenalism could be treated as a kind of philosophical basis of the special theory of relativity. The perceptual limitations of our senses hold the key to the understanding of relativistic postulates. The specialness of the speed of light in our phenomenal space and time is more a matter of our perceptual apparatus, than an input postulate to the special theory of relativity. The author believes that the parallels among the phenomenological, Western spiritual and the Eastern Advaita interpretations of special relativity point to an exciting possibility of unifying the Eastern and Western schools of thought to some extent.

– Editor

Key Words: Relativity, Speed of Light, Fenomenalismo, Advaita.

Introducción

The philosophical basis of the special theory of relativity can be interpreted in terms of Western phenomenalism, which views space and time are considered perceptual and cognitive constructs created out our sensory inputs. Desde esta perspectiva, the special status of light and its speed can be understood through a phenomenological study of our senses and the perceptual limitations to our phenomenal notions of space and time. A similar view is echoed in the BrahmanMaya distinción en Advaita. If we think of space and time as part of Maya, we can partly understand the importance that the speed of light in our reality, as enshrined in special relativity. The central role of light in our reality is highlighted in the Bible as well. These remarkable parallels among the phenomenological, Western spiritual and the Advaita interpretations of special relativity point to an exciting possibility of unifying the Eastern and Western schools of thought to a certain degree.

Special Relativity

Einstein unveiled his special theory of relativity2 a little over a century ago. In his theory, he showed that space and time were not absolute entities. They are entities relative to an observer. An observer’s space and time are related to those of another through the speed of light. Por ejemplo, nothing can travel faster than the speed of light. In a moving system, time flows slower and space contracts in accordance with equations involving the speed of light. Luz, por lo tanto,, enjoys a special status in our space and time. This specialness of light in our reality is indelibly enshrined in the special theory of relativity.

Where does this specialness come from? What is so special about light that its speed should figure in the basic structure of space and time and our reality? This question has remained unanswered for over 100 años. It also brings in the metaphysical aspects of space and time, which form the basis of what we perceive as reality.

Noumenal-Phenomenal and BrahmanMaya Distinctions

En el Advaita3 view of reality, what we perceive is merely an illusion-Maya. Advaita explicitly renounces the notion that the perceived reality is external or indeed real. It teaches us that the phenomenal universe, our conscious awareness of it, and our bodily being are all an illusion or Maya. They are not the true, absolute reality. The absolute reality existing in itself, independent of us and our experiences, es Brahman.

A similar view of reality is echoed in phenomenalism,4 which holds that space and time are not objective realities. Ellos no son más que el medio de nuestra percepción. En este punto de vista, all the phenomena that happen in space and time are merely bundles of our perception. Space and time are also cognitive constructs arising from perception. Así, the reasons behind all the physical properties that we ascribe to space and time have to be sought in the sensory processes that create our perception, whether we approach the issue from the Advaita or phenomenalism perspective.

This analysis of the importance of light in our reality naturally brings in the metaphysical aspects of space and time. In Kant’s view,5 space and time are pure forms of intuition. They do not arise from our experience because our experiences presuppose the existence of space and time. Así, we can represent space and time in the absence of objects, but we cannot represent objects in the absence of space and time.

Kant’s middle-ground has the advantage of reconciling the views of Newton and Leibniz. It can agree with Newton’s view6 that space is absolute and real for phenomenal objects open to scientific investigation. It can also sit well with Leibniz’s view7 that space is not absolute and has an existence only in relation to objects, by highlighting their relational nature, not among objects in themselves (noumenal objects), but between observers and objects.

We can roughly equate the noumenal objects to forms in Brahman and our perception of them to Maya. En este artículo, we will use the terms “noumenal reality,” “absolute reality,” o “realidad física” interchangeably to describe the collection of noumenal objects, their properties and interactions, which are thought to be the underlying causes of our perception. Del mismo modo, we will “phenomenal reality,” “perceived or sensed reality,” y “perceptual reality” to signify our reality as we perceive it.

As with Brahman causing Maya, we assume that the phenomenal notions of space and time arise from noumenal causes8 through our sensory and cognitive processes. Note that this causality assumption is ad-hoc; there is no a priori reason for phenomenal reality to have a cause, nor is causation a necessary feature of the noumenal reality. Despite this difficulty, we proceed from a naive model for the noumenal reality and show that, through the process of perception, podemos “derivar” a phenomenal reality that obeys the special theory of relativity.

This attempt to go from the phenomena (espacio y el tiempo) to the essence of what we experience (a model for noumenal reality) is roughly in line with Husserl’s transcendental phenomenology.9 The deviation is that we are more interested in the manifestations of the model in the phenomenal reality itself rather than the validity of the model for the essence. Through this study, we show that the specialness of the speed of light in our phenomenal space and time is a consequence of our perceptual apparatus. It doesn’t have to be an input postulate to the special theory of relativity.

Perception and Phenomenal Reality

The properties we ascribe to space and time (such as the specialness of the speed of light) can only be a part of our perceived reality or Maya, en Advaita, not of the underlying absolute reality, Brahman. If we think of space and time as aspects of our perceived reality arising from an unknowable Brahman through our sensory and cognitive processes, we can find an explanation for the special distinction of the speed of light in the process and mechanism of our sensing. Our thesis is that the reason for the specialness of light in our phenomenal notions of space and time is hidden in the process of our perception.

Nosotros, por lo tanto,, study how the noumenal objects around us generate our sensory signals, and how we construct our phenomenal reality out of these signals in our brains. The first part is already troublesome because noumenal objects, por definición, have no properties or interactions that we can study or understand.

These features of the noumenal reality are identical to the notion of Brahman en Advaita, which highlights that the ultimate truth is Brahman, the one beyond time, space and causation. Brahman is the material cause of the universe, but it transcends the cosmos. It transcends time; it exists in the past, present and future. It transcends space; it has no beginning, middle and end. It even transcends causality. For that reason, Brahman is incomprehensible to the human mind. The way it manifests to us is through our sensory and cognitive processes. This manifestation is Maya, the illusion, que, in the phenomenalistic parlance, corresponds to the phenomenal reality.

For our purpose in this article, we describe our sensory and cognitive process and the creation of the phenomenal reality or Maya10 as follows. It starts with the noumenal objects (or forms in Brahman), which generate the inputs to our senses. Our senses then process the signals and relay the processed electric data corresponding to them to our brain. The brain creates a cognitive model, a representation of the sensory inputs, and presents it to our conscious awareness as reality, which is our phenomenal world or Maya.

This description of how the phenomenal reality created ushers in a tricky philosophical question. Who or what creates the phenomenal reality and where? It is not created by our senses, brain and mind because these are all objects or forms in the phenomenal reality. The phenomenal reality cannot create itself. It cannot be that the noumenal reality creates the phenomenal reality because, in that case, it would be inaccurate to assert the cognitive inaccessibility to the noumenal world.

This philosophical trouble is identical in Advaita así. Our senses, brain and mind cannot create Maya, because they are all part of Maya. Si Brahman created Maya, it would have to be just as real. This philosophical quandary can be circumvented in the following way. We assume that all events and objects in Maya have a cause or form in Brahman or in the noumenal world. Así, we postulate that our senses, mind and body all have some (unknown) forms in Brahman (or in the noumenal world), and these forms create Maya in our conscious awareness, ignoring the fact that our consciousness itself is an illusory manifestation in the phenomenal world. This inconsistency is not material to our exploration into the nature of space and time because we are seeking the reason for the specialness of light in the sensory process rather than at the level of consciousness.

Space and time together form what physics considers the basis of reality. Space makes up our visual reality precisely as sounds make up our auditory world. Just as sounds are a perceptual experience rather than a fundamental property of physical reality, space also is an experience, or a cognitive representation of the visual inputs, not a fundamental aspect of Brahman or the noumenal reality. The phenomenal reality thus created is Maya. La Maya events are an imperfect or distorted representation of the corresponding Brahman events. Desde Brahman is a superset of Maya (o, equivalently, our senses are potentially incapable of sensing all aspects of the noumenal reality), not all objects and events in Brahman create a projection in Maya. Our perception (o Maya) is thus limited because of the sense modality and its speed, which form the focus of our investigation in this article.

In summary, it can be argued that the noumenal-phenomenal distinction in phenomenalism is an exact parallel to the BrahmanMaya distinción en Advaita if we think of our perceived reality (o Maya) as arising from sensory and cognitive processes.

Sensing Space and Time, and the Role of Light

The phenomenal notions of space and time together form what physics considers the basis of reality. Since we take the position that space and time are the end results of our sensory perception, we can understand some of the limitations in our Maya by studying the limitations in our senses themselves.

At a fundamental level, how do our senses work? Our sense of sight operates using light, and the fundamental interaction involved in sight falls in the electromagnetic (EM) category because light (or photon) is the intermediary of EM interactions.11

The exclusivity of EM interaction is not limited to our long-range sense of sight; all the short-range senses (toque, taste, smell and hearing) are also EM in nature. In physics, the fundamental interactions are modeled as fields with gauge bosons.12 In quantum electrodynamics13 (the quantum field theory of EM interactions), photon (or light) is the gauge boson mediating EM interactions. Electromagnetic interactions are responsible for all our sensory inputs. To understand the limitations of our perception of space, we need not highlight the EM nature of all our senses. Space is, en gran, the result of our sight sense. But it is worthwhile to keep in mind that we would have no sensing, and indeed no reality, in the absence of EM interactions.

Like our senses, all our technological extensions to our senses (such as radio telescopes, electron microscopes, red shift measurements and even gravitational lensing) use EM interactions exclusively to measure our universe. Así, we cannot escape the basic constraints of our perception even when we use modern instruments. The Hubble telescope may see a billion light years farther than our naked eyes, pero lo que ve es todavía un billón de años más que lo que ven nuestros ojos. Our phenomenal reality, whether built upon direct sensory inputs or technologically enhanced, is made up of a subset of EM particles and interactions only. What we perceive as reality is a subset of forms and events in the noumenal world corresponding to EM interactions, filtered through our sensory and cognitive processes. En el Advaita parlance, Maya can be thought of as a projection of Brahman through EM interactions into our sensory and cognitive space, quite probably an imperfect projection.

The exclusivity of EM interactions in our perceived reality is not always appreciated, mainly because of a misconception that we can sense gravity directly. This confusion arises because our bodies are subject to gravity. There is a fine distinction between “being subject to” y “being able to sense” gravitational force. The gravity sensing in our ears measures the effect of gravity on EM matter. In the absence of EM interaction, it is impossible to sense gravity, or anything else for that matter.

This assertion that there is no sensing in the absence of EM interactions brings us to the next philosophical hurdle. One can always argue that, in the absence of EM interaction, there is no matter to sense. This argument is tantamount to insisting that the noumenal world consists of only those forms and events that give rise to EM interaction in our phenomenal perception. En otras palabras, it is the same as insisting that Brahman is made up of only EM interactions. What is lacking in the absence of EM interaction is only our phenomenal reality. En el Advaita notion, in the absence of sensing, Maya does not exist. The absolute reality or Brahman, sin embargo, is independent of our sensing it. De nuevo, we see that the Eastern and Western views on reality we explored in this article are remarkably similar.

The Speed of Light

Knowing that our space-time is a representation of the light waves our eyes receive, we can immediately see that light is indeed special in our reality. In our view, sensory perception leads to our brain’s representation that we call reality, o Maya. Any limitation in this chain of sensing leads to a corresponding limitation in our phenomenal reality.

One limitation in the chain from senses to perception is the finite speed of photon, which is the gauge boson of our senses. The finite speed of the sense modality influences and distorts our perception of motion, espacio y el tiempo. Because these distortions are perceived as a part of our reality itself, the root cause of the distortion becomes a fundamental property of our reality. This is how the speed of light becomes such an important constant in our space-time.

The importance of the speed of light, sin embargo, is respected only in our phenomenal Maya. Other modes of perception have other speeds the figure as the fundamental constant in their space-like perception. The reality sensed through echolocation, por ejemplo, has the speed of sound as a fundamental property. De hecho, it is fairly simple to establish14 that echolocation results in a perception of motion that obeys something very similar to special relativity with the speed of light replaced with that of sound.

Theories beyond Sensory Limits

The basis of physics is the world view called scientific realism, which is not only at the core of sciences but is our natural way of looking at the world as well. Scientific realism, and hence physics, assume an independently existing external world, whose structures are knowable through scientific investigations. To the extent observations are based on perception, the philosophical stance of scientific realism, as it is practiced today, can be thought of as a trust in our perceived reality, and as an assumption that it is this reality that needs to be explored in science.

Physics extends its reach beyond perception or Maya through the rational element of pure theory. Most of physics works in this “extended” intellectual reality, with concepts such as fields, forces, light rays, átomos, partículas, etc., the existence of which is insisted upon through the metaphysical commitment implied in scientific realism. Sin embargo, it does not claim that the rational extensions are the noumenal causes or Brahman giving raise to our phenomenal perception.

Scientific realism has helped physics tremendously, with all its classical theories. Sin embargo, scientific realism and the trust in our perception of reality should apply only within the useful ranges of our senses. Within the ranges of our sensory perceptions, we have fairly intuitive physics. An example of an intuitive picture is Newtonian mechanics that describe “normal” objects moving around at “normal” speeds.

When we get closer to the edges of our sensory modalities, we have to modify our sciences to describe the reality as we sense it. These modifications lead to different, and possibly incompatible, theories. When we ascribe the natural limitations of our senses and the consequent limitations of our perception (and therefore observations) to the fundamental nature of reality itself, we end up introducing complications in our physical laws. Depending on which limitations we are incorporating into the theory (e.g., small size, large speeds etc.), we may end up with theories that are incompatible with each other.

Our argument is that some of these complications (y, con suerte, incompatibilities) can be avoided if we address the sensory limitations directly. Por ejemplo, we can study the consequence of the fact that our senses operate at the speed of light as follows. We can model Brahman (the noumenal reality) as obeying classical mechanics, and work out what kind of Maya (phenomenal reality) we will experience through the chain of sensing.

The modeling of the noumenal world (as obeying classical mechanics), por supuesto, has shaky philosophical foundations. But the phenomenal reality predicted from this model is remarkably close to the reality we do perceive. Starting from this simple model, it can be easily shown our perception of motion at high speeds obeys special relativity.

The effects due to the finite speed of light are well known in physics. Sabemos, por ejemplo, that what we see happening in distant stars and galaxies now actually took place quite awhile ago. A more “advanced” effect due to the light travel time15 is the way we perceive motion at high speeds, which is the basis of special relativity. De hecho, many astrophysical phenomena can be understood16 in terms of light travel time effects. Because our sense modality is based on light, our sensed picture of motion has the speed of light appearing naturally in the equations describing it. So the importance of the speed of light in our space-time (as described in special relativity) is due to the fact that our reality is Maya created based on light inputs.

Conclusion

Almost all branches of philosophy grapple with this distinction between the phenomenal and the absolute realities to some extent. Advaita Vedanta holds the unrealness of the phenomenal reality as the basis of their world view. En este artículo, we showed that the views in phenomenalism can be thought of as a restatement of the Advaita postulates.

When such a spiritual or philosophical insight makes its way into science, great advances in our understanding can be expected. This convergence of philosophy (or even spirituality) and science is beginning to take place, most notably in neuroscience, which views reality as a creation of our brain, echoing the notion of Maya.

Science gives a false impression that we can get arbitrarily close to the underlying physical causes through the process of scientific investigation and rational theorization. An example of such theorization can be found in our sensation of hearing. The experience or the sensation of sound is an incredibly distant representation of the physical cause–namely air pressure waves. We are aware of the physical cause because we have a more powerful sight sense. So it would seem that we can indeed go from Maya (sonar) to the underlying causes (air pressure waves).

Sin embargo, it is a fallacy to assume that the physical cause (the air pressure waves) es Brahman. Air pressure waves are still a part of our perception; they are part of the intellectual picture we have come to accept. This intellectual picture is an extension of our visual reality, based on our trust in the visual reality. It is still a part of Maya.

The new extension of reality proposed in this article, again an intellectual extension, is an educated guess. We guess a model for the absolute reality, o Brahman, and predict what the consequent perceived reality should be, working forward through the chain of sensing and creating Maya. If the predicted perception is a good match with the Maya we do experience, then the guesswork for Brahman is taken to be a fairly accurate working model. The consistency between the predicted perception and what we do perceive is the only validation of the model for the nature of the absolute reality. Además, the guess is only one plausible model for the absolute reality; there may be different such “solutions” to the absolute reality all of which end up giving us our perceived reality.

It is a mistake to think of the qualities of our subjective experience of sound as the properties of the underlying physical process. In an exact parallel, it is a fallacy to assume that the subjective experience of space and time is the fundamental property of the world we live in. The space-time continuum, as we see it or feel it, is only a partial and incomplete representation of the unknowable Brahman. If we are willing to model the unknowable Brahman as obeying classical mechanics, we can indeed derive the properties of our perceived reality (such as time dilation, length contraction, light speed ceiling and so on in special relativity). By proposing this model for the noumenal world, we are not suggesting that all the effects of special relativity are mere perceptual artifacts. We are merely reiterating a known fact that space and time themselves cannot be anything but perceptual constructs. Thus their properties are manifestations of the process of perception.

When we consider processes close to or beyond our sensor limits, the manifestations of our perceptual and cognitive constraints become significant. Por lo tanto, when it comes to the physics that describes such processes, we really have to take into account the role that our perception and cognition play in sensing them. The universe as we see it is only a cognitive model created out of the photons falling on our retina or on the photosensors of the Hubble telescope. Debido a la velocidad finita del soporte de información (namely light), our perception is distorted in such a way as to give us the impression that space and time obey special relativity. Hacen, but space and time are only a part of our perception of an unknowable reality—a perception limited by the speed of light.

The central role of light in creating our reality or universe is at the heart of western spiritual philosophy as well. Un universo desprovisto de luz no es simplemente un mundo donde usted ha apagado las luces. De hecho, es un universo carente de sí mismo, un universo que no existe. It is in this context that we have to understand the wisdom behind the notion that “la tierra estaba desordenada, and void'” hasta que Dios hizo la luz para ser, diciendo “Hágase la luz.” Quran also says, “Allah is the light of the heavens.” The role of light in taking us from the void (la nada) to a reality was understood for a long, mucho tiempo. Is it possible that the ancient saints and prophets knew things that we are only now beginning to uncover with all our advances in knowledge? Whether we use old Eastern Advaita views or their Western counterparts, we can interpret the philosophical stance behind special relativity as hidden in the distinction between our phenomenal reality and its unknowable physical causes.

Referencias

  1. Dr. Manoj Thulasidas graduated from the Indian Institute of Technology (IIT), Madras, en 1987. He studied fundamental particles and interactions at the CLEO collaboration at Cornell University during 1990-1992. After receiving his PhD in 1993, he moved to Marseilles, France and continued his research with the ALEPH collaboration at CERN, Geneva. During his ten-year career as a research scientist in the field of High energy physics, fue co-autor de más de 200 publicaciones.
  2. Einstein, A. (1905). Zur Elektrodynamik bewegter Körper. (On The Electrodynamics Of Moving Bodies). Anales de la Física, 17, 891-921.
  3. Radhakrishnan, S. & Moore, C. A. (1957). Source Book in Indian Philosophy. Princeton University Press, Princeton, NY.
  4. Chisolm, R. (1948). The Problem of Empiricism. The Journal of Philosophy, 45, 512-517.
  5. Allison, H. (2004). Kant’s Transcendental Idealism. Yale University Press.
  6. Rynasiewicz, R. (1995). By Their Properties, Causes and Effects: Newton’s Scholium on Time, Espacio, Place and Motion. Studies in History and Philosophy of Science, 26, 133-153, 295-321.
  7. Calkins, M. En. (1897). Kant’s Conception of the Leibniz Space and Time Doctrine. The Philosophical Review, 6 (4), 356-369.
  8. Janaway, C., ed. (1999). The Cambridge Companion to Schopenhauer. Cambridge University Press.
  9. Schmitt, R. (1959). Husserl’s Transcendental-Phenomenological Reduction. Philosophy and Phenomenological Research, 20 (2), 238-245.
  10. Thulasidas, M. (2007). El universo Unreal. Asian Books, Singapur.
  11. Electromagnetic (EM) interaction is one of the four kinds of interactions in the Standard Model (Griffths, 1987) of particle physics. It is the interaction between charged bodies. Despite the EM repulsion between them, sin embargo, the protons stay confined within the nucleus because of the strong interaction, whose magnitude is much bigger than that of EM interactions. The other two interactions are termed the weak interaction and the gravitational interaction.
  12. In quantum field theory, every fundamental interaction consists of emitting a particle and absorbing it in an instant. These so-called virtual particles emitted and absorbed are known as the gauge bosons that mediate the interactions.
  13. Feynman, R. (1985). Quantum Electrodynamics. Addison Wesley.
  14. Thulasidas, M. (2007). El universo Unreal. Asian Books, Singapur.
  15. Rees, M. (1966). Appearance of Relativistically Expanding Radio Sources. Naturaleza, 211, 468-470.
  16. Thulasidas, M. (2007un). Son fuentes de radio y explosiones de rayos gamma Luminal Plumas? International Journal of Modern Physics D, 16 (6), 983-1000.