Tag Archives: relativity

Debates and Discussions on http://www.anti-relativity.com/forum.
(My writings only.)

The Big Bang Theory

I am a physicist, but I don’t quite understand the Big Bang theory. Let me tell you why.

The Big Bang theory says that the whole universe started from asingularity” — a single point. The first question then is, a single point where? It is not a single pointin spacebecause the whole space was a single point. The Discovery channel would put it fancifully thatthe whole universe could fit in the palm of your hand,” which of course it could not. Your palm would also be a little palm inside the little universe in that single point.

The second question is, if the whole universe was inside one point, what about all the points around it? Physicists would advise you not to ask such stupid questions. Don’t feel bad, they have asked me to shut up as well. Some of them may kindly explain that the other points may be parallel universes. Others may say that there are nootherpoints. They may point out (as Steven Weinberg does in The Dreams of a Final Theory) that there is nothing more to the north of the North Pole. I consider this analogy more of a semantic argument than a scientific one, but let’s buy this argument for now.

The next hurdle is that the singularity is in space-timenot merely in space. So before the Big Bang, there was no time. Sorry, there was nobefore!” This is a concept that my five year old son has problems with. Again, the Big Bang cosmologist will point out that things do not necessarily have to continue backwardsyou may think that whatever temperature something is at, you can always make it a little colder. But you cannot make it colder than absolute zero. True, true; but is temperature the same as time? Temperature is a measure of hotness, which is an aggregate of molecular speeds. And speed is distance traveled in unit time. Time again. Hmmm….

I am sure it is my lack of imagination or incompleteness of training that is preventing me from understanding and accepting this Big Bang concept. But even after buying the space-time singularity concept, other difficulties persist.

Firstly, if the whole universe is at one point at one time, one would naively expect it to make a super-massive black hole from which not even light can escape. Clearly then, the whole universe couldn’t have banged out of that point. But I’m sure there is a perfectly logical explanation why it can, just that I don’t know it yet. May be some of my readers will point it out to me?

Second, what’s with dark matter and dark energy? The Big Bang cosmology has to stretch itself a bit with the notion of dark energy to account for the large scale dynamics of the observed universe. Our universe is expanding (or so it appears) at an accelerating rate, which can only be accounted for by assuming that there is an invisible energy pushing the galaxies apart. Within the galaxies themselves, stars are moving around as though there is more mass than we can see. This is the so called dark matter. Althoughdarksignifies invisible, to me, it sounds as though we are in the dark about what these beasts are!

The third trouble I have is the fact that the Big Bang cosmology violates special relativity (SR). This little concern of mine has been answered in many different ways:

  • One answer is that general relativitytrumpsSRif there are conflicting predictions or directives from these two theories, I was advised to always trust GR.
  • Besides, SR applies only to local motion, like spaceships whizzing past each other. Non-local events do not have to obey SR. This makes me wonder how events know whether they are local or not. Well, that was bit tongue in cheek. I can kind of buy this argument (based on curvature of space-time perhaps becoming significant at large distances), although the non-scientific nature of local-ness makes me uneasy. (During the inflationary phase in the Big Bang theory, were things local or non-local?)
  • Third answer: In the case of the Big Bang, the space itself is expanding, hence no violation of SR. SR applies to motion through space. (Wonder if I could’ve used that line when I got pulled over on I-81. “Officer, I wasn’t speeding. Just that the space in between was expanding a little too fast!”)

Speaking of space expanding, it is supposed to be expanding only in between galaxies, not within them, apparently. I’m sure there is a perfectly logical explanation why, probably related to the proximity of masses or whatnot, but I’m not well-versed enough to understand it. In physics, disagreement and skepticism are always due to ignorance. But it is true that I have no idea what they mean when they say the space itself is expanding. If I stood in a region where the space was expanding, would I become bigger and would galaxies look smaller to me?

Note that it is necessary for space to expand only between galaxies. If it expanded everywhere, from subatomic to galactic scales, it would look as though nothing changed. Hardly satisfying because the distant galaxies do look as though they are flying off at great speeds.

I guess the real question is, what exactly is the difference between space expanding between two galaxies and the two galaxies merely moving away from each other?

One concept that I find bizarre is that singularity doesn’t necessarily mean single point in space. It was pointed out to me that the Big Bang could have been a spread out affairthinking otherwise was merely my misconception, because I got confused by the similarity between the wordssingularityand single.

People present the Big Bang theory in physics pretty much like Evolution in biology, implying the same level of infallibility. But I feel that it is disingenuous to do that. To me, it looks as though the theory is so full of patchwork, such a mathematical collage to cook up something that is consistent with GR that it is hard to imagine that it corresponds to anything real (ignoring, for the moment, my favorite questionwhat is real?) But popular writers have embraced it. For instance, Ray Kurzweil and Richard Dawkins put it as a matter of fact in their books, lending it a credence that it perhaps doesn’t merit.

Constraints of Perception and Cognition in Relativistic Physics

This post is an abridged online version of my article that appears in Galilean Electrodynamics in November, 2008. [Ref: Galilean Electrodynamics, Vol. 19, No. 6, Nov/Dec 2008, pp: 103–117] ()

Cognitive neuroscience treats space and time as our brain’s representation of our sensory inputs. In this view, our perceptual reality is only a distant and convenient mapping of the physical processes causing the sensory inputs. Sound is a mapping of auditory inputs, and space is a representation of visual inputs. Any limitation in the chain of sensing has a specific manifestation on the cognitive representation that is our reality. One physical limitation of our visual sensing is the finite speed of light, which manifests itself as a basic property of our space-time. In this article, we look at the consequences of the limited speed of our perception, namely the speed of light, and show that they are remarkably similar to the coordinate transformation in special relativity. From this observation, and inspired by the notion that space is merely a cognitive model created out of light signal inputs, we examine the implications of treating special relativity theory as a formalism for describing the perceptual effects due to the finite speed of light. Using this framework, we show that we can unify and explain a wide array of seemingly unrelated astrophysical and cosmological phenomena. Once we identify the manifestations of the limitations in our perception and cognitive representation, we can understand the consequent constraints on our space and time, leading to a new understanding of astrophysics and cosmology.

Key words: cognitive neuroscience; reality; special relativity; light travel time effect; gamma rays bursts; cosmic microwave background radiation.

1. Introduction

Our reality is a mental picture that our brain creates, starting from our sensory inputs [1]. Although this cognitive map is often assumed to be a faithful image of the physical causes behind the sensing process, the causes themselves are entirely different from the perceptual experience of sensing. The difference between the cognitive representation and their physical causes is not immediately obvious when we consider our primary sense of sight. But, we can appreciate the difference by looking at the olfactory and auditory senses because we can use our cognitive model based on sight in order to understand the workings of the ‘lessersenses. Odors, which may appear to be a property of the air we breathe, are in fact our brain’s representation of the chemical signatures that our noses sense. Similarly, sound is not an intrinsic property of a vibrating body, but our brain’s mechanism to represent the pressure waves in the air that our ears sense. Table I shows the chain from the physical causes of the sensory input to the final reality as the brain creates it. Although the physical causes can be identified for the olfactory and auditory chains, they are not easily discerned for visual process. Since sight is the most powerful sense we possess, we are obliged to accept our brain’s representation of visual inputs as the fundamental reality.

While our visual reality provides an excellent framework for physical sciences, it is important to realize that the reality itself is a model with potential physical or physiological limitations and distortions. The tight integration between the physiology of perception and its representation in the brain was proven recently in a clever experiment using the tactile funneling illusion [2]. This illusion results in a single tactile sensation at the focal point at the center of a stimulus pattern even though no stimulation is applied at that site. In the experiment, the brain activation region corresponded to the focal point where the sensation was perceived, rather than the points where the stimuli were applied, proving that the brain registered perceptions, not the physical causes of the perceived reality. In other words, for the brain, there is no difference between applying the pattern of the stimuli and applying only one stimulus at the center of the pattern. The brain maps the sensory inputs to regions that correspond to their perception, rather than the regions that physiologically correspond to the sensory stimuli.

Sense modality: Physical cause: Sensed signal: Brain’s model:
Olfactory Chemicals Chemical reactions Smells
Auditory Vibrations Pressure waves Sounds
Visual Unknown Light Space, time

Table I: The brain’s representation of different sensory inputs. Odors are a representation of chemical compositions and concentration our nose senses. Sounds are a mapping of the air pressure waves produced by a vibrating object. In sight, we do not know the physical reality, our representation is space, and possibly time.

The neurological localization of different aspects of reality has been established in neuroscience by lesion studies. The perception of motion (and the consequent basis of our sense of time), for instance, is so localized that a tiny lesion can erase it completely. Cases of patients with such specific loss of a part of reality [1] illustrate the fact that our experience of reality, every aspect of it, is indeed a creation of the brain. Space and time are aspects of the cognitive representation in our brain.

Space is a perceptual experience much like sound. Comparisons between the auditory and visual modes of sensing can be useful in understanding the limitations of their representations in the brain. One limitation is the input ranges of the sensory organs. Ears are sensitive in the frequency range 20Hz-20kHz, and eyes are limited to the visible spectrum. Another limitation, which may exist in specific individuals, is an inadequate representation of the inputs. Such a limitation can lead to tone-deafness and color-blindness, for instance. The speed of the sense modality also introduces an effect, such as the time lag between seeing an event and hearing the corresponding sound. For visual perception, a consequence of the finite speed of light is called a Light Travel Time (LTT) effect. LLT offers one possible interpretation for the observed superluminal motion in certain celestial objects [3,4]: when an object approaches the observer at a shallow angle, it may appear to move much faster than reality [5] due to LTT.

Other consequences of the LTT effects in our perception are remarkably similar to the coordinate transformation of the special relativity theory (SRT). These consequences include an apparent contraction of a receding object along its direction of motion and a time dilation effect. Furthermore, a receding object can never appear to be going faster than the speed of light, even if its real speed is superluminal. While SRT does not explicitly forbid it, superluminality is understood to lead to time travel and the consequent violations of causality. An apparent violation of causality is one of the consequences of LTT, when the superluminal object is approaching the observer. All these LTT effects are remarkably similar to effects predicted by SRT, and are currently taken as ‘confirmationthat space-time obeys SRT. But instead, space-time may have a deeper structure that, when filtered through LTT effects, results in our perception that space-time obeys SRT.

Once we accept the neuroscience view of reality as a representation of our sensory inputs, we can understand why the speed of light figures so prominently in our physical theories. The theories of physics are a description of reality. Reality is created out of the readings from our senses, especially our eyes. They work at the speed of light. Thus the sanctity accorded to the speed of light is a feature only of our reality, not the absolute, ultimate reality that our senses are striving to perceive. When it comes to physics that describes phenomena well beyond our sensory ranges, we really have to take into account the role that our perception and cognition play in seeing them. The Universe as we see it is only a cognitive model created out of the photons falling on our retina or on the photo-sensors of the Hubble telescope. Because of the finite speed of the information carrier (namely photons), our perception is distorted in such a way as to give us the impression that space and time obey SRT. They do, but space and time are not the absolute reality. “Space and time are modes by which we think and not conditions in which we live,” as Einstein himself put it. Treating our perceived reality as our brain’s representation of our visual inputs (filtered through the LTT effect), we will see that all the strange effects of the coordinate transformation in SRT can be understood as the manifestations of the finite speed of our senses in our space and time.

Furthermore, we will show that this line of thinking leads to natural explanations for two classes of astrophysical phenomena:

Gamma Ray Bursts, which are very brief, but intense flashes of \gamma rays, currently believed to emanate from cataclysmic stellar collapses, and Radio Sources, which are typically symmetric and seem associated with galactic cores, currently considered manifestations of space-time singularities or neutron stars. These two astrophysical phenomena appear distinct and unrelated, but they can be unified and explained using LTT effects. This article presents such a unified quantitative model. It will also show that the cognitive limitations to reality due to LTT effects can provide qualitative explanations for such cosmological features as the apparent expansion of the Universe and the Cosmic Microwave Background Radiation (CMBR). Both these phenomena can be understood as related to our perception of superluminal objects. It is the unification of these seemingly distinct phenomena at vastly different length and time scales, along with its conceptual simplicity, that we hold as the indicators of validity of this framework.

2. Similarities between LTT Effects & SRT

The coordinate transformation derived in Einstein’s original paper [6] is, in part, a manifestation of the LTT effects and the consequence of imposing the constancy of light speed in all inertial frames. This is most obvious in the first thought experiment, where observers moving with a rod find their clocks not synchronized due to the difference in LTT’s along the length of the rod. However, in the current interpretation of SRT, the coordinate transformation is considered a basic property of space and time. One difficulty that arises from this formulation is that the definition of the relative velocity between the two inertial frames becomes ambiguous. If it is the velocity of the moving frame as measured by the observer, then the observed superluminal motion in radio jets starting from the core region becomes a violation of SRT. If it is a velocity that we have to deduce by considering LTT effects, then we have to employ the extra ad-hoc assumption that superluminality is forbidden. These difficulties suggest that it may be better to disentangle the LTT effects from the rest of SRT. Although not attempted in this paper, the primary motivation for SRT, namely the covariance of Maxwell’s equations, may be accomplished even without attributing LTT effects to the properties of space and time.

In this Section, we will consider space and time as a part of the cognitive model created by the brain, and illustrate that SRT applies to the cognitive model. The absolute reality (of which the SRT-like space-time is our perception) does not have to obey the restrictions of SRT. In particular, objects are not restricted to subluminal speeds, even though they may appear to us as if they are restricted to subluminal speeds in our perception of space and time. If we disentangle LTT effects from the rest of SRT, we can understand a wide array of phenomena, as shown in this article.

SRT seeks a linear coordinate transformation between coordinate systems in motion with respect to each other. We can trace the origin of linearity to a hidden assumption on the nature of space and time built into SRT, as stated by Einstein [6]: “In the first place it is clear that the equations must be linear on account of the properties of homogeneity which we attribute to space and time.Because of this assumption of linearity, the original derivation of the transformation equations ignores the asymmetry between approaching and receding objects and concentrates on receding objects. Both approaching and receding objects can be described by two coordinate systems that are always receding from each other. For instance, if a system K is moving with respect to another system k along the positive X axis of k, then an object at rest in K at a positive x is approaching an observer at the origin of k. Unlike SRT, considerations based on LTT effects result in intrinsically different set of transformation laws for objects approaching an observer and those receding from him. More generally, the transformation depends on the angle between the velocity of the object and the observer’s line of sight. Since the transformation equations based on LTT effects treat approaching and receding objects asymmetrically, they provide a natural solution to the twin paradox, for instance.

2.1 First Order Perceptual Effects

For approaching and receding objects, the relativistic effects are second order in speed \beta, and speed typically appears as \sqrt{1-\beta^2}. The LTT effects, on the other hand, are first order in speed. The first order effects have been studied in the last fifty years in terms of the appearance of a relativistically moving extended body [7-15]. It has also been suggested that the relativistic Doppler effect can be considered the geometric mean [16] of more basic calculations. The current belief is that the first order effects are an optical illusion to be taken out of our perception of reality. Once these effects are taken out or ‘deconvolvedfrom the observations, the ‘realspace and time are assumed to obey SRT. Note that this assumption is impossible to verify because the deconvolution is an ill-posed problemthere are multiple solutions to the absolute reality that all result in the same perceptual picture. Not all the solutions obey SRT.

The notion that it is the absolute reality that obeys SRT ushers in a deeper philosophical problem. This notion is tantamount to insisting that space and time are in fact ‘intuitionsbeyond sensory perception rather than a cognitive picture created by our brain out of the sensory inputs it receives. A formal critique of the Kantian intuitions of space and time is beyond the scope of this article. Here, we take the position that it is our observed or perceived reality that obeys SRT and explore where it leads us. In other words, we assume that SRT is nothing but a formalization of the perceptual effects. These effects are not first order in speed when the object is not directly approaching (or receding from) the observer, as we will see later. We will show in this article that a treatment of SRT as a perceptual effect will give us natural solution for astrophysical phenomena like gamma ray bursts and symmetric radio jets.

2.2 Perception of Speed

We first look at how the perception of motion is modulated by LTT effects. As remarked earlier, the transformation equations of SRT treat only objects receding from the observer. For this reason, we first consider a receding object, flying away from the observer at a speed \beta of the object depends on the real speed b (as shown in Appendix A.1):

\beta_O ,=, \frac{\beta}{1,+,\beta}            (1)
\lim_{\beta\to\infty} \beta_O ,=, 1           (2)

Thus, due to LTT effects, an infinite real velocity gets mapped to an apparent velocity \beta_O=1. In other words, no object can appear to travel faster than the speed of light, entirely consistent with SRT.

Physically, this apparent speed limit amounts to a mapping of c to \infty. This mapping is most obvious in its consequences. For instance, it takes an infinite amount of energy to accelerate an object to an apparent speed \beta_O=1 because, in reality, we are accelerating it to an infinite speed. This infinite energy requirement can also be viewed as the relativistic mass changing with speed, reaching \infty at \beta_O=1. Einstein explained this mapping as: “For velocities greater than that of light our deliberations become meaningless; we shall, however, find in what follows, that the velocity of light in our theory plays the part, physically, of an infinitely great velocity.Thus, for objects receding from the observer, the effects of LTT are almost identical to the consequences of SRT, in terms of the perception of speed.

2.3 Time Dilation
Time Dilation
Figure 1
Figure 1:. Comparison between light travel time (LTT) effects and the predictions of the special theory of relativity (SR). The X-axis is the apparent speed and the Y-axis shows the relative time dilation or length contraction.

LTT effects influence the way time at the moving object is perceived. Imagine an object receding from the observer at a constant rate. As it moves away, the successive photons emitted by the object take longer and longer to reach the observer because they are emitted at farther and farther away. This travel time delay gives the observer the illusion that time is flowing slower for the moving object. It can be easily shown (see Appendix A.2) that the time interval observed \Delta t_O is related to the real time interval \Delta t as:

  \frac{\Delta t_O}{\Delta t} ,=, \frac{1}{1-\beta_O}          (3)

for an object receding from the observer (\theta=\pi). This observed time dilation is plotted in Fig. 1, where it is compared to the time dilation predicted in SR. Note that the time dilation due to LTT has a bigger magnitude than the one predicted in SR. However, the variation is similar, with both time dilations tending to \infty as the observed speed tends to c.

2.4 Length Contraction

The length of an object in motion also appears different due to LTT effects. It can be shown (see Appendix A.3) that observed length d_O as:

\frac{d_O}{d} ,=, {1-\beta_O}           (4)

for an object receding from the observer with an apparent speed of \beta_O. This equation also is plotted in Fig. 1. Note again that the LTT effects are stronger than the ones predicted in SRT.

Fig. 1 illustrates that both time dilation and Lorentz contraction can be thought of as LTT effects. While the actual magnitudes of LTT effects are larger than what SRT predicts, their qualitative dependence on speed is almost identical. This similarity is not surprising because the coordinate transformation in SRT is partly based on LTT effects. If LTT effects are to be applied, as an optical illusion, on top of the consequences of SRT as currently believed, then the total observed length contraction and time dilation will be significantly more than the SRT predictions.

2.5 Doppler Shift
The rest of the article (the sections up to Conclusions) has been abridged and can be read in the PDF version.

5 Conclusions

In this article, we started with an insight from cognitive neuroscience about the nature of reality. Reality is a convenient representation that our brain creates out of our sensory inputs. This representation, though convenient, is an incredibly distant experiential mapping of the actual physical causes that make up the inputs to our senses. Furthermore, limitations in the chain of sensing and perception map to measurable and predictable manifestations to the reality we perceive. One such fundamental constraint to our perceived reality is the speed of light, and the corresponding manifestations, LTT effects. Because space and time are a part of a reality created out of light inputs to our eyes, some of their properties are manifestations of LTT effects, especially on our perception of motion. The absolute, physical reality generating the light inputs does not obey the properties we ascribe to our perceived space and time. We showed that LTT effects are qualitatively identical to those of SRT, noting that SRT only considers frames of reference receding from each other. This similarity is not surprising because the coordinate transformation in SRT is derived based partly on LTT effects, and partly on the assumption that light travels at the same speed with respect to all inertial frames. In treating it as a manifestation of LTT, we did not address the primary motivation of SRT, which is a covariant formulation of Maxwell’s equations, as evidenced by the opening statements of Einstein’s original paper [6]. It may be possible to disentangle the covariance of electrodynamics from the coordinate transformation, although it is not attempted in this article.

Unlike SRT, LTT effects are asymmetric. This asymmetry provides a resolution to the twin paradox and an interpretation of the assumed causality violations associated with superluminality. Furthermore, the perception of superluminality is modulated by LTT effects, and explains g ray bursts and symmetric jets. As we showed in the article, perception of superluminal motion also holds an explanation for cosmological phenomena like the expansion of the Universe and cosmic microwave background radiation. LTT effects should be considered as a fundamental constraint in our perception, and consequently in physics, rather than as a convenient explanation for isolated phenomena. Given that our perception is filtered through LTT effects, we have to deconvolute them from our perceived reality in order to understand the nature of the absolute, physical reality. This deconvolution, however, results in multiple solutions. Thus, the absolute, physical reality is beyond our grasp, and any assumed properties of the absolute reality can only be validated through how well the resultant perceived reality agrees with our observations. In this article, we assumed that the absolute reality obeys our intuitively obvious classical mechanics and asked the question how such a reality would be perceived when filtered through LTT effects. We demonstrated that this particular treatment could explain certain astrophysical and cosmological phenomena that we observe. The distinction between the different notions of velocity, including the proper velocity and the Einsteinian velocity, was the subject matter of a recent issue of this journal [33].

The coordinate transformation in SRT should be viewed as a redefinition of space and time (or, more generally, reality) in order to accommodate the distortions in our perception of motion due to LTT effects. The absolute reality behind our perception is not subject to restrictions of SRT. One may be tempted to argue that SRT applies to the ‘real’ space and time, not our perception. This line of argument begs the question, what is real? Reality is nothing but a cognitive model created in our brain starting from our sensory inputs, visual inputs being the most significant. Space itself is a part of this cognitive model. The properties of space are a mapping of the constraints of our perception. We have no access to a reality beyond our perception. The choice of accepting our perception as a true image of reality and redefining space and time as described in SRT indeed amounts to a philosophical choice. The alternative presented in the article is prompted by the view in modern neuroscience that reality is a cognitive model in the brain based on our sensory inputs. Adopting this alternative reduces us to guessing the nature of the absolute reality and comparing its predicted projection to our real perception. It may simplify and elucidate some theories in physics and explain some puzzling phenomena in our Universe. However, this option is yet another philosophical stance against the unknowable absolute reality.


[1] V.S. Ramachandran, “The Emerging Mind: Reith Lectures on Neuroscience” (BBC, 2003).
[2] L.M. Chen, R.M. Friedman, and A. W. Roe, Science 302, 881 (2003).
[3] J.A. Biretta, W.B. Sparks, and F. Macchetto, ApJ 520, 621 (1999).
[4] A.J. Zensus, ARA&A 35, 607 (1997).
[5] M. Rees, Nature 211, 468 (1966).
[6] A. Einstein, Annalen der Physik 17, 891 (1905).
[7 ] R. Weinstein, Am. J. Phys. 28, 607 (1960).
[8 ] M.L. Boas, Am. J. Phys. 29, 283 (1961).
[9 ] S. Yngström, Arkiv för Fysik 23, 367 (1962).
[10] G.D. Scott and M.R. Viner, Am. J. Phys. 33, 534 (1965).
[11] N.C. McGill, Contemp. Phys. 9, 33 (1968).
[12] R.Bhandari, Am. J. Phys 38, 1200 (1970).
[13] G.D. Scott and H.J. van Driel, Am. J. Phys. 38, 971 (1970).
[14] P.M. Mathews and M. Lakshmanan, Nuovo Cimento 12, 168 (1972).
[15] J. Terrell, Am. J. Phys. 57, 9 (1989).
[16] T.M. Kalotas and A.M. Lee, Am. J. Phys. 58, 187 (1990).
[17] I.F. Mirabel and L.F. Rodríguez, Nature 371, 46 (1994).
[18] I.F. Mirabel and L.F. Rodríguez, ARA&A 37, 409 (1999).
[19] G. Gisler, Nature 371, 18 (1994).
[20] R.P. Fender, S.T. Garrington, D. J. McKay, T. W. B. Muxlow, G. G. Pooley, R. E. Spencer, A. M. Stirling, and E.B. Waltman, MNRAS 304, 865 (1999).
[21] R. A. Perley, J.W. Dreher, and J. J. Cowan, ApJ 285, L35 (1984).
[22] I. Owsianik and J.E. Conway, A&A 337, 69 (1998).
[23] A.G. Polatidis, J.E. Conway, and I.Owsianik, in Proc. 6th European VLBI Network Symposium, edited by Ros, Porcas, Lobanov, Zensus (2002).
[24] M. Thulasidas, The perceptual effect (due to LTT) of a superluminal object appearing as two objects is best illustrated using an animation, which can be found at the author’s web site: http://www.TheUnrealUniverse.com/anim.html
[25] S. Jester, H.J. Roeser, K.Meisenheimer, and R.Perley, A&A 431, 477 (2005), astro-ph/0410520.
[26] T. Piran, International Journal of Modern Physics A 17, 2727 (2002).
[27] E.P. Mazets, S.V. Golenetskii, V.N. Ilyinskii, Y. A. Guryan, and R. L. Aptekar, Ap&SS 82, 261 (1982).
[28] T. Piran, Phys.Rept. 314, 575 (1999).
[29] F. Ryde, ApJ 614, 827 (2005).
[30] F. Ryde, , and R. Svensson, ApJ 566, 210 (2003).
[31] G. Ghisellini, J.Mod.Phys.A (Proc. 19th European Cosmic Ray SymposiumECRS 2004) (2004), astro-ph/0411106.
[32] F. Ryde and R. Svensson, ApJ 529, L13 (2000).
[33] C. Whitney, Galilean Electrodynamics, Special Issues 3, Editor’s Essays, Winter 2005.

The Unreal Universe — Seeing Light in Science and Spirituality

We know that our universe is a bit unreal. The stars we see in the night sky, for instance, are not really there. They may have moved or even died by the time we get to see them. This delay is due to the time it takes for light from the distant stars and galaxies to reach us. We know of this delay.

The same delay in seeing has a lesser known manifestation in the way we perceive moving objects. It distorts our perception such that something coming towards us would look as though it is coming in faster. Strange as it may sound, this effect has been observed in astrophysical studies. Some of the heavenly bodies do look as though they are moving several times the speed of light, while their “real” speed is probably a lot lower.

Now, this effect raises an interesting questionwhat is the “real” speed? If seeing is believing, the speed we see should be the real speed. Then again, we know of the light travel time effect. So we should correct the speed we see before believing it. What then doesseeingmean? When we say we see something, what do we really mean?

Light in Physics

Seeing involves light, obviously. The finite speed of light influences and distorts the way we see things. This fact should hardly come as a surprise because we do know that things are not as we see them. The sun that we see is already eight minutes old by the time we see it. This delay is not a big deal; if we want to know what is going on at the sun now, all we have to do is to wait for eight minutes. We, nonetheless, have tocorrectfor the distortions in our perception due to the finite speed of light before we can trust what we see.

What is surprising (and seldom highlighted) is that when it comes to sensing motion, we cannot back-calculate the same way we take out the delay in seeing the sun. If we see a celestial body moving at an improbably high speed, we cannot figure out how fast and in what direction it isreallymoving without making further assumptions. One way of handling this difficulty is to ascribe the distortions in our perception to the fundamental properties of the arena of physics — space and time. Another course of action is to accept the disconnection between our perception and the underlying “reality” and deal with it in some way.

Einstein chose the first route. In his groundbreaking paper over a hundred years ago, he introduced the special theory of relativity, in which he attributed the manifestations of the finite speed of light to the fundamental properties of space and time. One core idea in special relativity (SR) is that the notion of simultaneity needs to be redefined because it takes some time for light from an event at a distant place to reach us, and we become aware of the event. The concept of “Now” doesn’t make much sense, as we saw, when we speak of an event happening in the sun, for instance. Simultaneity is relative.

Einstein defined simultaneity using the instants in time we detect the event. Detection, as he defined it, involves a round-trip travel of light similar to Radar detection. We send out light, and look at the reflection. If the reflected light from two events reaches us at the same instant, they are simultaneous.
Another way of defining simultaneity is using sensingwe can call two events simultaneous if the light from them reaches us at the same instant. In other words, we can use the light generated by the objects under observation rather than sending light to them and looking at the reflection.

This difference may sound like a hair-splitting technicality, but it does make an enormous difference in the predictions we can make. Einstein’s choice results in a mathematical picture that has many desirable properties, thereby making further development elegant.

The other possibility has an advantage when it comes to describing objects in motion because it corresponds better with how we measure them. We don’t use Radar to see the stars in motion; we merely sense the light (or other radiation) coming from them. But this choice of using a sensory paradigm, rather than Radar-like detection, to describe the universe results in a slightly uglier mathematical picture.

The mathematical difference spawns different philosophical stances, which in turn percolate to the understanding of our physical picture of reality. As an illustration, let us look at an example from astrophysics. Suppose we observe (through a radio telescope, for instance) two objects in the sky, roughly of the same shape and properties. The only thing we know for sure is that the radio waves from two different points in the sky reach the radio telescope at the same instant in time. We can guess that the waves started their journey quite a while ago.

For symmetric objects, if we assume (as we routinely do) that the waves started the journey roughly at the same instant in time, we end up with a picture of two “real” symmetric lobes more or less the way see them.

But there is different possibility that the waves originated from the same object (which is in motion) at two different instants in time, reaching the telescope at the same instant. This possibility explains some spectral and temporal properties of such symmetric radio sources, which is what I mathematically described in a recent physics article. Now, which of these two pictures should we take as real? Two symmetric objects as we see them or one object moving in such a way as to give us that impression? Does it really matter which one is “real”? Does “real” mean anything in this context?

The philosophical stance in implied in special relativity answers this question unequivocally. There is an unambiguous physical reality from which we get the two symmetric radio sources, although it takes a bit of mathematical work to get to it. The mathematics rules out the possibility of a single object moving in such a fashion as to mimic two objects. Essentially, what we see is what is out there.

On the other hand, if we define simultaneity using concurrent arrival of light, we will be forced to admit the exact opposite. What we see is pretty far from what is out there. We will confess that we cannot unambiguously decouple the distortions due to the constraints in perception (the finite speed of light being the constraint of interest here) from what we see. There are multiple physical realities that can result in the same perceptual picture. The only philosophical stance that makes sense is the one that disconnects the sensed reality and the causes behind what is being sensed.

This disconnect is not uncommon in philosophical schools of thought. Phenomenalism, for instance, holds the view that space and time are not objective realities. They are merely the medium of our perception. All the phenomena that happen in space and time are merely bundles of our perception. In other words, space and time are cognitive constructs arising from perception. Thus, all the physical properties that we ascribe to space and time can only apply to the phenomenal reality (the reality as we sense it). The noumenal reality (which holds the physical causes of our perception), by contrast, remains beyond our cognitive reach.

The ramifications of the two different philosophical stances described above are tremendous. Since modern physics seems to embrace a non-phenomenalistic view of space and time, it finds itself at odds with that branch of philosophy. This chasm between philosophy and physics has grown to such a degree that the Nobel prize winning physicist, Steven Weinberg, wondered (in his bookDreams of a Final Theory”) why the contribution from philosophy to physics have been so surprisingly small. It also prompts philosophers to make statements like, “Whether ‘noumenal reality causes phenomenal realityor whether ‘noumenal reality is independent of our sensing itor whether ‘we sense noumenal reality,’ the problem remains that the concept of noumenal reality is a totally redundant concept for the analysis of science.

One, almost accidental, difficulty in redefining the effects of the finite speed of light as the properties of space and time is that any effect that we do understand gets instantly relegated to the realm of optical illusions. For instance, the eight-minute delay in seeing the sun, because we readily understand it and disassociate from our perception using simple arithmetic, is considered a mere optical illusion. However, the distortions in our perception of fast moving objects, although originating from the same source are considered a property of space and time because they are more complex.

We have to come to terms with the fact that when it comes to seeing the universe, there is no such thing as an optical illusion, which is probably what Goethe pointed out when he said, “Optical illusion is optical truth.

The distinction (or lack thereof) between optical illusion and truth is one of the oldest debates in philosophy. After all, it is about the distinction between knowledge and reality. Knowledge is considered our view about something that, in reality, isactually the case.In other words, knowledge is a reflection, or a mental image of something external, as shown in the figure below.
Commonsense view of reality
In this picture, the black arrow represents the process of creating knowledge, which includes perception, cognitive activities, and the exercise of pure reason. This is the picture that physics has come to accept.
Alternate view of reality
While acknowledging that our perception may be imperfect, physics assumes that we can get closer and closer to the external reality through increasingly finer experimentation, and, more importantly, through better theorization. The Special and General Theories of Relativity are examples of brilliant applications of this view of reality where simple physical principles are relentlessly pursued using formidable machine of pure reason to their logically inevitable conclusions.

But there is another, alternative view of knowledge and reality that has been around for a long time. This is the view that regards perceived reality as an internal cognitive representation of our sensory inputs, as illustrated below.

In this view, knowledge and perceived reality are both internal cognitive constructs, although we have come to think of them as separate. What is external is not the reality as we perceive it, but an unknowable entity giving rise to the physical causes behind sensory inputs. In the illustration, the first arrow represents the process of sensing, and the second arrow represents the cognitive and logical reasoning steps. In order to apply this view of reality and knowledge, we have to guess the nature of the absolute reality, unknowable as it is. One possible candidate for the absolute reality is Newtonian mechanics, which gives a reasonable prediction for our perceived reality.

To summarize, when we try to handle the distortions due to perception, we have two options, or two possible philosophical stances. One is to accept the distortions as part of our space and time, as SR does. The other option is to assume that there is ahigherreality distinct from our sensed reality, whose properties we can only conjecture. In other words, one option is to live with the distortion, while the other is to propose educated guesses for the higher reality. Neither of these options is particularly attractive. But the guessing path is similar to the view accepted in phenomenalism. It also leads naturally to how reality is viewed in cognitive neuroscience, which studies the biological mechanisms behind cognition.

In my view, the two options are not inherently distinct. The philosophical stance of SR can be thought of as coming from a deep understanding that space is merely a phenomenal construct. If the sense modality introduces distortions in the phenomenal picture, we may argue that one sensible way of handling it is to redefine the properties of the phenomenal reality.

Role of Light in Our Reality

From the perspective of cognitive neuroscience, everything we see, sense, feel and think is the result of the neuronal interconnections in our brain and the tiny electrical signals in them. This view must be right. What else is there? All our thoughts and worries, knowledge and beliefs, ego and reality, life and deatheverything is merely neuronal firings in the one and half kilograms of gooey, grey material that we call our brain. There is nothing else. Nothing!

In fact, this view of reality in neuroscience is an exact echo of phenomenalism, which considers everything a bundle of perception or mental constructs. Space and time are also cognitive constructs in our brain, like everything else. They are mental pictures our brains concoct out of the sensory inputs that our senses receive. Generated from our sensory perception and fabricated by our cognitive process, the space-time continuum is the arena of physics. Of all our senses, sight is by far the dominant one. The sensory input to sight is light. In a space created by the brain out of the light falling on our retinas (or on the photo sensors of the Hubble telescope), is it a surprise that nothing can travel faster than light?

This philosophical stance is the basis of my book, The Unreal Universe, which explores the common threads binding physics and philosophy. Such philosophical musings usually get a bad rap from us physicists. To physicists, philosophy is an entirely different field, another silo of knowledge. We need to change this belief and appreciate the overlap among different knowledge silos. It is in this overlap that we can expect to find breakthroughs in human thought.

This philosophical grand-standing may sound presumptuous and the veiled self-admonition of physicists understandably unwelcome; but I am holding a trump card. Based on this philosophical stance, I have come up with a radically new model for two astrophysical phenomena, and published it in an article titled, “Are Radio Sources and Gamma Ray Bursts Luminal Booms?” in the well-known International Journal of Modern Physics D in June 2007. This article, which soon became one of the top accessed articles of the journal by Jan 2008, is a direct application of the view that the finite speed of light distorts the way we perceive motion. Because of these distortions, the way we see things is a far cry from the way they are.

We may be tempted to think that we can escape such perceptual constraints by using technological extensions to our senses such as radio telescopes, electron microscopes or spectroscopic speed measurements. After all, these instruments do not have “perception” per se and should be immune to the human weaknesses we suffer from. But these soulless instruments also measure our universe using information carriers limited to the speed of light. We, therefore, cannot escape the basic constraints of our perception even when we use modern instruments. In other words, the Hubble telescope may see a billion light years farther than our naked eyes, but what it sees is still a billion years older than what our eyes see.

Our reality, whether technologically enhanced or built upon direct sensory inputs, is the end result of our perceptual process. To the extent that our long range perception is based on light (and is therefore limited to its speed), we get only a distorted picture of the universe.

Light in Philosophy and Spirituality

The twist to this story of light and reality is that we seem to have known all this for a long time. Classical philosophical schools seem to have thought along lines very similar to Einstein’s thought experiment.

Once we appreciate the special place accorded to light in modern science, we have to ask ourselves how different our universe would have been in the absence of light. Of course, light is only a label we attach to a sensory experience. Therefore, to be more accurate, we have to ask a different question: if we did not have any senses that responded to what we call light, would that affect the form of the universe?

The immediate answer from any normal (that is, non-philosophical) person is that it is obvious. If everybody is blind, everybody is blind. But the existence of the universe is independent of whether we can see it or not. Is it though? What does it mean to say the universe exists if we cannot sense it? Ahthe age-old conundrum of the falling tree in a deserted forest. Remember, the universe is a cognitive construct or a mental representation of the light input to our eyes. It is notout there,” but in the neurons of our brain, as everything else is. In the absence of light in our eyes, there is no input to be represented, ergo no universe.

If we had sensed the universe using modalities that operated at other speeds (echolocation, for instance), it is those speeds that would have figured in the fundamental properties of space and time. This is the inescapable conclusion from phenomenalism.

The role of light in creating our reality or universe is at the heart of Western religious thinking. A universe devoid of light is not simply a world where you have switched off the lights. It is indeed a universe devoid of itself, a universe that doesn’t exist. It is in this context that we have to understand the wisdom behind the statement thatthe earth was without form, and voiduntil God caused light to be, by sayingLet there be light.

The Quran also says, “Allah is the light of the heavens and the earth,” which is mirrored in one of the ancient Hindu writings: “Lead me from darkness to light, lead me from the unreal to the real.The role of light in taking us from the unreal void (the nothingness) to a reality was indeed understood for a long, long time. Is it possible that the ancient saints and prophets knew things that we are only now beginning to uncover with all our supposed advances in knowledge?

I know I may be rushing in where angels fear to tread, for reinterpreting the scriptures is a dangerous game. Such foreign interpretations are seldom welcome in the theological circles. But I seek refuge in the fact that I am looking for concurrence in the metaphysical views of spiritual philosophies, without diminishing their mystical or theological value.

The parallels between the noumenal-phenomenal distinction in phenomenalism and the Brahman-Maya distinction in Advaita are hard to ignore. This time-tested wisdom on the nature of reality from the repertoire of spirituality is now reinvented in modern neuroscience, which treats reality as a cognitive representation created by the brain. The brain uses the sensory inputs, memory, consciousness, and even language as ingredients in concocting our sense of reality. This view of reality, however, is something physics is yet to come to terms with. But to the extent that its arena (space and time) is a part of reality, physics is not immune to philosophy.

As we push the boundaries of our knowledge further and further, we are beginning to discover hitherto unsuspected and often surprising interconnections between different branches of human efforts. In the final analysis, how can the diverse domains of our knowledge be independent of each other when all our knowledge resides in our brain? Knowledge is a cognitive representation of our experiences. But then, so is reality; it is a cognitive representation of our sensory inputs. It is a fallacy to think that knowledge is our internal representation of an external reality, and therefore distinct from it. Knowledge and reality are both internal cognitive constructs, although we have come to think of them as separate.

Recognizing and making use of the interconnections among the different domains of human endeavour may be the catalyst for the next breakthrough in our collective wisdom that we have been waiting for.

The Philosophy of Special RelativityA Comparison between Indian and Western Interpretations

Abstract: The Western philosophical phenomenalism could be treated as a kind of philosophical basis of the special theory of relativity. The perceptual limitations of our senses hold the key to the understanding of relativistic postulates. The specialness of the speed of light in our phenomenal space and time is more a matter of our perceptual apparatus, than an input postulate to the special theory of relativity. The author believes that the parallels among the phenomenological, Western spiritual and the Eastern Advaita interpretations of special relativity point to an exciting possibility of unifying the Eastern and Western schools of thought to some extent.


Key Words: Relativity, Speed of Light, Phenomenalism, Advaita.


The philosophical basis of the special theory of relativity can be interpreted in terms of Western phenomenalism, which views space and time are considered perceptual and cognitive constructs created out our sensory inputs. From this perspective, the special status of light and its speed can be understood through a phenomenological study of our senses and the perceptual limitations to our phenomenal notions of space and time. A similar view is echoed in the BrahmanMaya distinction in Advaita. If we think of space and time as part of Maya, we can partly understand the importance that the speed of light in our reality, as enshrined in special relativity. The central role of light in our reality is highlighted in the Bible as well. These remarkable parallels among the phenomenological, Western spiritual and the Advaita interpretations of special relativity point to an exciting possibility of unifying the Eastern and Western schools of thought to a certain degree.

Special Relativity

Einstein unveiled his special theory of relativity2 a little over a century ago. In his theory, he showed that space and time were not absolute entities. They are entities relative to an observer. An observer’s space and time are related to those of another through the speed of light. For instance, nothing can travel faster than the speed of light. In a moving system, time flows slower and space contracts in accordance with equations involving the speed of light. Light, therefore, enjoys a special status in our space and time. This specialness of light in our reality is indelibly enshrined in the special theory of relativity.

Where does this specialness come from? What is so special about light that its speed should figure in the basic structure of space and time and our reality? This question has remained unanswered for over 100 years. It also brings in the metaphysical aspects of space and time, which form the basis of what we perceive as reality.

Noumenal-Phenomenal and BrahmanMaya Distinctions

In the Advaita3 view of reality, what we perceive is merely an illusion-Maya. Advaita explicitly renounces the notion that the perceived reality is external or indeed real. It teaches us that the phenomenal universe, our conscious awareness of it, and our bodily being are all an illusion or Maya. They are not the true, absolute reality. The absolute reality existing in itself, independent of us and our experiences, is Brahman.

A similar view of reality is echoed in phenomenalism,4 which holds that space and time are not objective realities. They are merely the medium of our perception. In this view, all the phenomena that happen in space and time are merely bundles of our perception. Space and time are also cognitive constructs arising from perception. Thus, the reasons behind all the physical properties that we ascribe to space and time have to be sought in the sensory processes that create our perception, whether we approach the issue from the Advaita or phenomenalism perspective.

This analysis of the importance of light in our reality naturally brings in the metaphysical aspects of space and time. In Kant’s view,5 space and time are pure forms of intuition. They do not arise from our experience because our experiences presuppose the existence of space and time. Thus, we can represent space and time in the absence of objects, but we cannot represent objects in the absence of space and time.

Kant’s middle-ground has the advantage of reconciling the views of Newton and Leibniz. It can agree with Newton’s view6 that space is absolute and real for phenomenal objects open to scientific investigation. It can also sit well with Leibniz’s view7 that space is not absolute and has an existence only in relation to objects, by highlighting their relational nature, not among objects in themselves (noumenal objects), but between observers and objects.

We can roughly equate the noumenal objects to forms in Brahman and our perception of them to Maya. In this article, we will use the termsnoumenal reality,” “absolute reality,” or “physical reality” interchangeably to describe the collection of noumenal objects, their properties and interactions, which are thought to be the underlying causes of our perception. Similarly, we willphenomenal reality,” “perceived or sensed reality,” and “perceptual realityto signify our reality as we perceive it.

As with Brahman causing Maya, we assume that the phenomenal notions of space and time arise from noumenal causes8 through our sensory and cognitive processes. Note that this causality assumption is ad-hoc; there is no a priori reason for phenomenal reality to have a cause, nor is causation a necessary feature of the noumenal reality. Despite this difficulty, we proceed from a naive model for the noumenal reality and show that, through the process of perception, we canderivea phenomenal reality that obeys the special theory of relativity.

This attempt to go from the phenomena (space and time) to the essence of what we experience (a model for noumenal reality) is roughly in line with Husserl’s transcendental phenomenology.9 The deviation is that we are more interested in the manifestations of the model in the phenomenal reality itself rather than the validity of the model for the essence. Through this study, we show that the specialness of the speed of light in our phenomenal space and time is a consequence of our perceptual apparatus. It doesn’t have to be an input postulate to the special theory of relativity.

Perception and Phenomenal Reality

The properties we ascribe to space and time (such as the specialness of the speed of light) can only be a part of our perceived reality or Maya, in Advaita, not of the underlying absolute reality, Brahman. If we think of space and time as aspects of our perceived reality arising from an unknowable Brahman through our sensory and cognitive processes, we can find an explanation for the special distinction of the speed of light in the process and mechanism of our sensing. Our thesis is that the reason for the specialness of light in our phenomenal notions of space and time is hidden in the process of our perception.

We, therefore, study how the noumenal objects around us generate our sensory signals, and how we construct our phenomenal reality out of these signals in our brains. The first part is already troublesome because noumenal objects, by definition, have no properties or interactions that we can study or understand.

These features of the noumenal reality are identical to the notion of Brahman in Advaita, which highlights that the ultimate truth is Brahman, the one beyond time, space and causation. Brahman is the material cause of the universe, but it transcends the cosmos. It transcends time; it exists in the past, present and future. It transcends space; it has no beginning, middle and end. It even transcends causality. For that reason, Brahman is incomprehensible to the human mind. The way it manifests to us is through our sensory and cognitive processes. This manifestation is Maya, the illusion, which, in the phenomenalistic parlance, corresponds to the phenomenal reality.

For our purpose in this article, we describe our sensory and cognitive process and the creation of the phenomenal reality or Maya10 as follows. It starts with the noumenal objects (or forms in Brahman), which generate the inputs to our senses. Our senses then process the signals and relay the processed electric data corresponding to them to our brain. The brain creates a cognitive model, a representation of the sensory inputs, and presents it to our conscious awareness as reality, which is our phenomenal world or Maya.

This description of how the phenomenal reality created ushers in a tricky philosophical question. Who or what creates the phenomenal reality and where? It is not created by our senses, brain and mind because these are all objects or forms in the phenomenal reality. The phenomenal reality cannot create itself. It cannot be that the noumenal reality creates the phenomenal reality because, in that case, it would be inaccurate to assert the cognitive inaccessibility to the noumenal world.

This philosophical trouble is identical in Advaita as well. Our senses, brain and mind cannot create Maya, because they are all part of Maya. If Brahman created Maya, it would have to be just as real. This philosophical quandary can be circumvented in the following way. We assume that all events and objects in Maya have a cause or form in Brahman or in the noumenal world. Thus, we postulate that our senses, mind and body all have some (unknown) forms in Brahman (or in the noumenal world), and these forms create Maya in our conscious awareness, ignoring the fact that our consciousness itself is an illusory manifestation in the phenomenal world. This inconsistency is not material to our exploration into the nature of space and time because we are seeking the reason for the specialness of light in the sensory process rather than at the level of consciousness.

Space and time together form what physics considers the basis of reality. Space makes up our visual reality precisely as sounds make up our auditory world. Just as sounds are a perceptual experience rather than a fundamental property of physical reality, space also is an experience, or a cognitive representation of the visual inputs, not a fundamental aspect of Brahman or the noumenal reality. The phenomenal reality thus created is Maya. The Maya events are an imperfect or distorted representation of the corresponding Brahman events. Since Brahman is a superset of Maya (or, equivalently, our senses are potentially incapable of sensing all aspects of the noumenal reality), not all objects and events in Brahman create a projection in Maya. Our perception (or Maya) is thus limited because of the sense modality and its speed, which form the focus of our investigation in this article.

In summary, it can be argued that the noumenal-phenomenal distinction in phenomenalism is an exact parallel to the BrahmanMaya distinction in Advaita if we think of our perceived reality (or Maya) as arising from sensory and cognitive processes.

Sensing Space and Time, and the Role of Light

The phenomenal notions of space and time together form what physics considers the basis of reality. Since we take the position that space and time are the end results of our sensory perception, we can understand some of the limitations in our Maya by studying the limitations in our senses themselves.

At a fundamental level, how do our senses work? Our sense of sight operates using light, and the fundamental interaction involved in sight falls in the electromagnetic (EM) category because light (or photon) is the intermediary of EM interactions.11

The exclusivity of EM interaction is not limited to our long-range sense of sight; all the short-range senses (touch, taste, smell and hearing) are also EM in nature. In physics, the fundamental interactions are modeled as fields with gauge bosons.12 In quantum electrodynamics13 (the quantum field theory of EM interactions), photon (or light) is the gauge boson mediating EM interactions. Electromagnetic interactions are responsible for all our sensory inputs. To understand the limitations of our perception of space, we need not highlight the EM nature of all our senses. Space is, by and large, the result of our sight sense. But it is worthwhile to keep in mind that we would have no sensing, and indeed no reality, in the absence of EM interactions.

Like our senses, all our technological extensions to our senses (such as radio telescopes, electron microscopes, red shift measurements and even gravitational lensing) use EM interactions exclusively to measure our universe. Thus, we cannot escape the basic constraints of our perception even when we use modern instruments. The Hubble telescope may see a billion light years farther than our naked eyes, but what it sees is still a billion years older than what our eyes see. Our phenomenal reality, whether built upon direct sensory inputs or technologically enhanced, is made up of a subset of EM particles and interactions only. What we perceive as reality is a subset of forms and events in the noumenal world corresponding to EM interactions, filtered through our sensory and cognitive processes. In the Advaita parlance, Maya can be thought of as a projection of Brahman through EM interactions into our sensory and cognitive space, quite probably an imperfect projection.

The exclusivity of EM interactions in our perceived reality is not always appreciated, mainly because of a misconception that we can sense gravity directly. This confusion arises because our bodies are subject to gravity. There is a fine distinction betweenbeing subject to” and “being able to sensegravitational force. The gravity sensing in our ears measures the effect of gravity on EM matter. In the absence of EM interaction, it is impossible to sense gravity, or anything else for that matter.

This assertion that there is no sensing in the absence of EM interactions brings us to the next philosophical hurdle. One can always argue that, in the absence of EM interaction, there is no matter to sense. This argument is tantamount to insisting that the noumenal world consists of only those forms and events that give rise to EM interaction in our phenomenal perception. In other words, it is the same as insisting that Brahman is made up of only EM interactions. What is lacking in the absence of EM interaction is only our phenomenal reality. In the Advaita notion, in the absence of sensing, Maya does not exist. The absolute reality or Brahman, however, is independent of our sensing it. Again, we see that the Eastern and Western views on reality we explored in this article are remarkably similar.

The Speed of Light

Knowing that our space-time is a representation of the light waves our eyes receive, we can immediately see that light is indeed special in our reality. In our view, sensory perception leads to our brain’s representation that we call reality, or Maya. Any limitation in this chain of sensing leads to a corresponding limitation in our phenomenal reality.

One limitation in the chain from senses to perception is the finite speed of photon, which is the gauge boson of our senses. The finite speed of the sense modality influences and distorts our perception of motion, space and time. Because these distortions are perceived as a part of our reality itself, the root cause of the distortion becomes a fundamental property of our reality. This is how the speed of light becomes such an important constant in our space-time.

The importance of the speed of light, however, is respected only in our phenomenal Maya. Other modes of perception have other speeds the figure as the fundamental constant in their space-like perception. The reality sensed through echolocation, for instance, has the speed of sound as a fundamental property. In fact, it is fairly simple to establish14 that echolocation results in a perception of motion that obeys something very similar to special relativity with the speed of light replaced with that of sound.

Theories beyond Sensory Limits

The basis of physics is the world view called scientific realism, which is not only at the core of sciences but is our natural way of looking at the world as well. Scientific realism, and hence physics, assume an independently existing external world, whose structures are knowable through scientific investigations. To the extent observations are based on perception, the philosophical stance of scientific realism, as it is practiced today, can be thought of as a trust in our perceived reality, and as an assumption that it is this reality that needs to be explored in science.

Physics extends its reach beyond perception or Maya through the rational element of pure theory. Most of physics works in thisextendedintellectual reality, with concepts such as fields, forces, light rays, atoms, particles, etc., the existence of which is insisted upon through the metaphysical commitment implied in scientific realism. However, it does not claim that the rational extensions are the noumenal causes or Brahman giving raise to our phenomenal perception.

Scientific realism has helped physics tremendously, with all its classical theories. However, scientific realism and the trust in our perception of reality should apply only within the useful ranges of our senses. Within the ranges of our sensory perceptions, we have fairly intuitive physics. An example of an intuitive picture is Newtonian mechanics that describenormalobjects moving around atnormalspeeds.

When we get closer to the edges of our sensory modalities, we have to modify our sciences to describe the reality as we sense it. These modifications lead to different, and possibly incompatible, theories. When we ascribe the natural limitations of our senses and the consequent limitations of our perception (and therefore observations) to the fundamental nature of reality itself, we end up introducing complications in our physical laws. Depending on which limitations we are incorporating into the theory (e.g., small size, large speeds etc.), we may end up with theories that are incompatible with each other.

Our argument is that some of these complications (and, hopefully, incompatibilities) can be avoided if we address the sensory limitations directly. For instance, we can study the consequence of the fact that our senses operate at the speed of light as follows. We can model Brahman (the noumenal reality) as obeying classical mechanics, and work out what kind of Maya (phenomenal reality) we will experience through the chain of sensing.

The modeling of the noumenal world (as obeying classical mechanics), of course, has shaky philosophical foundations. But the phenomenal reality predicted from this model is remarkably close to the reality we do perceive. Starting from this simple model, it can be easily shown our perception of motion at high speeds obeys special relativity.

The effects due to the finite speed of light are well known in physics. We know, for instance, that what we see happening in distant stars and galaxies now actually took place quite awhile ago. A moreadvancedeffect due to the light travel time15 is the way we perceive motion at high speeds, which is the basis of special relativity. In fact, many astrophysical phenomena can be understood16 in terms of light travel time effects. Because our sense modality is based on light, our sensed picture of motion has the speed of light appearing naturally in the equations describing it. So the importance of the speed of light in our space-time (as described in special relativity) is due to the fact that our reality is Maya created based on light inputs.


Almost all branches of philosophy grapple with this distinction between the phenomenal and the absolute realities to some extent. Advaita Vedanta holds the unrealness of the phenomenal reality as the basis of their world view. In this article, we showed that the views in phenomenalism can be thought of as a restatement of the Advaita postulates.

When such a spiritual or philosophical insight makes its way into science, great advances in our understanding can be expected. This convergence of philosophy (or even spirituality) and science is beginning to take place, most notably in neuroscience, which views reality as a creation of our brain, echoing the notion of Maya.

Science gives a false impression that we can get arbitrarily close to the underlying physical causes through the process of scientific investigation and rational theorization. An example of such theorization can be found in our sensation of hearing. The experience or the sensation of sound is an incredibly distant representation of the physical causenamely air pressure waves. We are aware of the physical cause because we have a more powerful sight sense. So it would seem that we can indeed go from Maya (sound) to the underlying causes (air pressure waves).

However, it is a fallacy to assume that the physical cause (the air pressure waves) is Brahman. Air pressure waves are still a part of our perception; they are part of the intellectual picture we have come to accept. This intellectual picture is an extension of our visual reality, based on our trust in the visual reality. It is still a part of Maya.

The new extension of reality proposed in this article, again an intellectual extension, is an educated guess. We guess a model for the absolute reality, or Brahman, and predict what the consequent perceived reality should be, working forward through the chain of sensing and creating Maya. If the predicted perception is a good match with the Maya we do experience, then the guesswork for Brahman is taken to be a fairly accurate working model. The consistency between the predicted perception and what we do perceive is the only validation of the model for the nature of the absolute reality. Furthermore, the guess is only one plausible model for the absolute reality; there may be different suchsolutionsto the absolute reality all of which end up giving us our perceived reality.

It is a mistake to think of the qualities of our subjective experience of sound as the properties of the underlying physical process. In an exact parallel, it is a fallacy to assume that the subjective experience of space and time is the fundamental property of the world we live in. The space-time continuum, as we see it or feel it, is only a partial and incomplete representation of the unknowable Brahman. If we are willing to model the unknowable Brahman as obeying classical mechanics, we can indeed derive the properties of our perceived reality (such as time dilation, length contraction, light speed ceiling and so on in special relativity). By proposing this model for the noumenal world, we are not suggesting that all the effects of special relativity are mere perceptual artifacts. We are merely reiterating a known fact that space and time themselves cannot be anything but perceptual constructs. Thus their properties are manifestations of the process of perception.

When we consider processes close to or beyond our sensor limits, the manifestations of our perceptual and cognitive constraints become significant. Therefore, when it comes to the physics that describes such processes, we really have to take into account the role that our perception and cognition play in sensing them. The universe as we see it is only a cognitive model created out of the photons falling on our retina or on the photosensors of the Hubble telescope. Because of the finite speed of the information carrier (namely light), our perception is distorted in such a way as to give us the impression that space and time obey special relativity. They do, but space and time are only a part of our perception of an unknowable realitya perception limited by the speed of light.

The central role of light in creating our reality or universe is at the heart of western spiritual philosophy as well. A universe devoid of light is not simply a world where you have switched off the lights. It is indeed a universe devoid of itself, a universe that doesn’t exist. It is in this context that we have to understand the wisdom behind the notion thatthe earth was without form, and void'until God caused light to be, by sayingLet there be light.Quran also says, “Allah is the light of the heavens.The role of light in taking us from the void (the nothingness) to a reality was understood for a long, long time. Is it possible that the ancient saints and prophets knew things that we are only now beginning to uncover with all our advances in knowledge? Whether we use old Eastern Advaita views or their Western counterparts, we can interpret the philosophical stance behind special relativity as hidden in the distinction between our phenomenal reality and its unknowable physical causes.


  1. Dr. Manoj Thulasidas graduated from the Indian Institute of Technology (IIT), Madras, in 1987. He studied fundamental particles and interactions at the CLEO collaboration at Cornell University during 1990-1992. After receiving his PhD in 1993, he moved to Marseilles, France and continued his research with the ALEPH collaboration at CERN, Geneva. During his ten-year career as a research scientist in the field of High energy physics, he co-authored over 200 publications.
  2. Einstein, A. (1905). Zur Elektrodynamik bewegter Körper. (On The Electrodynamics Of Moving Bodies). Annalen der Physik, 17, 891-921.
  3. Radhakrishnan, S. & Moore, C. A. (1957). Source Book in Indian Philosophy. Princeton University Press, Princeton, NY.
  4. Chisolm, R. (1948). The Problem of Empiricism. The Journal of Philosophy, 45, 512-517.
  5. Allison, H. (2004). Kant’s Transcendental Idealism. Yale University Press.
  6. Rynasiewicz, R. (1995). By Their Properties, Causes and Effects: Newton’s Scholium on Time, Space, Place and Motion. Studies in History and Philosophy of Science, 26, 133-153, 295-321.
  7. Calkins, M. W. (1897). Kant’s Conception of the Leibniz Space and Time Doctrine. The Philosophical Review, 6 (4), 356-369.
  8. Janaway, C., ed. (1999). The Cambridge Companion to Schopenhauer. Cambridge University Press.
  9. Schmitt, R. (1959). Husserl’s Transcendental-Phenomenological Reduction. Philosophy and Phenomenological Research, 20 (2), 238-245.
  10. Thulasidas, M. (2007). The Unreal Universe. Asian Books, Singapore.
  11. Electromagnetic (EM) interaction is one of the four kinds of interactions in the Standard Model (Griffths, 1987) of particle physics. It is the interaction between charged bodies. Despite the EM repulsion between them, however, the protons stay confined within the nucleus because of the strong interaction, whose magnitude is much bigger than that of EM interactions. The other two interactions are termed the weak interaction and the gravitational interaction.
  12. In quantum field theory, every fundamental interaction consists of emitting a particle and absorbing it in an instant. These so-called virtual particles emitted and absorbed are known as the gauge bosons that mediate the interactions.
  13. Feynman, R. (1985). Quantum Electrodynamics. Addison Wesley.
  14. Thulasidas, M. (2007). The Unreal Universe. Asian Books, Singapore.
  15. Rees, M. (1966). Appearance of Relativistically Expanding Radio Sources. Nature, 211, 468-470.
  16. Thulasidas, M. (2007a). Are Radio Sources and Gamma Ray Bursts Luminal Booms? International Journal of Modern Physics D, 16 (6), 983-1000.

Einstein on God and Dice

Although Einstein is best known for his theories of relativity, he was also the main driving force behind the advent of quantum mechanics (QM). His early work in photo-voltaic effect paved way for future developments in QM. And he won the Nobel prize, not for the theories of relativity, but for this early work.

It then should come as a surprise to us that Einstein didn’t quite believe in QM. He spent the latter part of his career trying to device thought experiments that would prove that QM is inconsistent with what he believed to be the laws of nature. Why is it that Einstein could not accept QM? We will never know for sure, and my guess is probably as good as anybody else’s.

Einstein’s trouble with QM is summarized in this famous quote.

It is indeed difficult to reconcile the notions (or at least some interpretations) of QM with a word view in which a God has control over everything. In QM, observations are probabilistic in nature. That is to say, if we somehow manage to send two electrons (in the same state) down the same beam and observe them after a while, we may get two different observed properties.

We can interpret this imperfection in observation as our inability to set up identical initial states, or the lack of precision in our measurements. This interpretation gives rise to the so-called hidden variable theoriesconsidered invalid for a variety of reasons. The interpretation currently popular is that uncertainty is an inherent property of naturethe so-called Copenhagen interpretation.

In the Copenhagen picture, particles have positions only when observed. At other times, they should be thought of as kind of spread out in space. In a double-slit interference experiment using electrons, for instance, we should not ask whether a particular electron takes on slit or the other. As long as there is interference, it kind of takes both.

The troubling thing for Einstein in this interpretation would be that even God would not be able to make the electron take one slit or the other (without disturbing the interference pattern, that is). And if God cannot place one tiny electron where He wants, how is he going to control the whole universe?

UniverseSize and Age

I posted this question that was bothering me when I read that they found a galaxy at about 13 billion light years away. My understanding of that statement is: At distance of 13 billion light years, there was a galaxy 13 billion years ago, so that we can see the light from it now. Wouldn’t that mean that the universe is at least 26 billion years old? It must have taken the galaxy about 13 billion years to reach where it appears to be, and the light from it must take another 13 billion years to reach us.

In answering my question, Martin and Swansont (who I assume are academic phycisists) point out my misconceptions and essentially ask me to learn more. All shall be answered when I’m assimilated, it would appear! 🙂

This debate is published as a prelude to my post on the Big Bang theory, coming up in a day or two.

Mowgli 03-26-2007 10:14 PM

UniverseSize and Age
I was reading a post in http://www.space.com/ stating that they found a galaxy at about 13 billion light years away. I am trying to figure out what that statement means. To me, it means that 13 billion years ago, this galaxy was where we see it now. Isn’t that what 13b LY away means? If so, wouldn’t that mean that the universe has to be at least 26 billion years old? I mean, the whole universe started from one singular point; how could this galaxy be where it was 13 billion years ago unless it had at least 13 billion years to get there? (Ignoring the inflationary phase for the moment…) I have heard people explain that the space itself is expanding. What the heck does that mean? Isn’t it just a fancier way of saying that the speed of light was smaller some time ago?
swansont 03-27-2007 09:10 AM


Originally Posted by Mowgli
(Post 329204)
I mean, the whole universe started from one singular point; how could this galaxy be where it was 13 billion years ago unless it had at least 13 billion years to get there? (Ignoring the inflationary phase for the moment…)

Ignoring all the rest, how would this mean the universe is 26 billion years old?


Originally Posted by Mowgli
(Post 329204)
I have heard people explain that the space itself is expanding. What the heck does that mean? Isn’t it just a fancier way of saying that the speed of light was smaller some time ago?

The speed of light is an inherent part of atomic structure, in the fine structure constant (alpha). If c was changing, then the patterns of atomic spectra would have to change. There hasn’t been any confirmed data that shows that alpha has changed (there has been the occasional paper claiming it, but you need someone to repeat the measurements), and the rest is all consistent with no change.

Martin 03-27-2007 11:25 AM

To confirm or reinforce what swansont said, there are speculation and some fringe or nonstandard cosmologies that involve c changing over time (or alpha changing over time), but the changing constants thing just gets more and more ruled out.I’ve been watching for over 5 years and the more people look and study evidence the LESS likely it seems that there is any change. They rule it out more and more accurately with their data.So it is probably best to ignore thevarying speed of lightcosmologies until one is thoroughly familiar with standard mainstream cosmology.You have misconceptions Mowgli

  • General Relativity (the 1915 theory) trumps Special Rel (1905)
  • They don’t actually contradict if you understand them correctly, because SR has only a very limited local applicability, like to the spaceship passing by:-)
  • Wherever GR and SR SEEM to contradict, believe GR. It is the more comprehensive theory.
  • GR does not have a speed limit on the rate that very great distances can increase. the only speed limit is on LOCAL stuff (you can’t catch up with and pass a photon)
  • So we can and DO observe stuff that is receding from us faster than c. (It’s far away, SR does not apply.)
  • This was explained in a Sci Am article I think last year
  • Google the author’s name Charles Lineweaver and Tamara Davis.
  • We know about plenty of stuff that is presently more than 14 billion LY away.
  • You need to learn some cosmology so you wont be confused by these things.
  • Also asingularitydoes not mean a single point. that is a popular mistake because the words SOUND the same.
  • A singularity can occur over an entire region, even an infinite region.

Also thebig bangmodel doesn’t look like an explosion of matter whizzing away from some point. It shouldn’t be imagined like that. The best article explaining common mistakes people have is this Lineweaver and Davis thing in Sci Am. I think it was Jan or Feb 2005 but I could be a year off. Google it. Get it from your local library or find it online. Best advice I can give.

Mowgli 03-28-2007 01:30 AM

To swansont on why I thought 13 b LY implied an age of 26 b years:When you say that there is a galaxy at 13 b LY away, I understand it to mean that 13 billion years ago my time, the galaxy was at the point where I see it now (which is 13 b LY away from me). Knowing that everything started from the same point, it must have taken the galaxy at least 13 b years to get where it was 13 b years ago. So 13+13. I’m sure I must be wrong.To Martin: You are right, I need to learn quite a bit more about cosmology. But a couple of things you mentioned surprise mehow do we observe stuff that is receding from as FTL? I mean, wouldn’t the relativistic Doppler shift formula give imaginary 1+z? And the stuff beyond 14 b LY awayare theyoutsidethe universe?I will certainly look up and read the authors you mentioned. Thanks.
swansont 03-28-2007 03:13 AM


Originally Posted by Mowgli
(Post 329393)
To swansont on why I thought 13 b LY implied an age of 26 b years:When you say that there is a galaxy at 13 b LY away, I understand it to mean that 13 billion years ago my time, the galaxy was at the point where I see it now (which is 13 b LY away from me). Knowing that everything started from the same point, it must have taken the galaxy at least 13 b years to get where it was 13 b years ago. So 13+13. I’m sure I must be wrong.

That would depend on how you do your calibration. Looking only at a Doppler shift and ignoring all the other factors, if you know that speed correlates with distance, you get a certain redshift and you would probably calibrate that to mean 13b LY if that was the actual distance. That light would be 13b years old.

But as Martin has pointed out, space is expanding; the cosmological redshift is different from the Doppler shift. Because the intervening space has expanded, AFAIK the light that gets to us from a galaxy 13b LY away is not as old, because it was closer when the light was emitted. I would think that all of this is taken into account in the measurements, so that when a distance is given to the galaxy, it’s the actual distance.

Martin 03-28-2007 08:54 AM


Originally Posted by Mowgli
(Post 329393)
I will certainly look up and read the authors you mentioned.

This post has 5 or 6 links to that Sci Am article by Lineweaver and Davis


It is post #65 on the Astronomy links sticky thread

It turns out the article was in the March 2005 issue.

I think it’s comparatively easy to readwell written. So it should help.

When you’ve read the Sci Am article, ask more questionsyour questions might be fun to try and answer:-)

Unreal Time

Farsight wrote:Time is a velocity-dependent subjective measure of event succession rather than something fundamentalthe events mark the time, the time doesn’t mark the events. This means the stuff out there is space rather than space-time, and is anaetherveiled by subjective time.

I like your definition of time. It is close to my own view that time isunreal.It is possible to treat space as real and space-time as something different, as you do. This calls for some careful thought. I will outline my thinking in this post and illustrate it with an example, if my friends don’t pull me out for lunch before I can finish. :)

The first question we need to ask ourselves is why space and time seem coupled? The answer is actually too simple to spot, and it is in your definition of time. Space and time mix through our concept of velocity and our brain’s ability to sense motion. There is an even deeper connection, which is that space is a cognitive representation of the photons inputs to our eyes, but we will get to it later.

Let’s assume for a second that we had a sixth sense that operated at an infinite speed. That is, if star explodes at a million light years from us, we can sense it immediately. We will see it only after a million years, but we sense it instantly. I know, it is a violation of SR, cannot happen and all that, but stay with me for a second. Now, a little bit of thinking will convince you that the space that we sense using this hypothetical sixth sense is Newtonian. Here, space and time can be completely decoupled, absolute time can be defined etc. Starting from this space, we can actually work out how we will see it using light and our eyes, knowing that the speed of light is what it is. It will turn out, clearly, that we seen events with a delay. That is a first order (or static) effect. The second order effect is the way we perceive objects in motion. It turns out that we will see a time dilation and a length contraction (for objects receding from us.)

Let me illustrate it a little further using echolocation. Assume that you are a blind bat. You sense your space using sonar pings. Can you sense a supersonic object? If it is coming towards you, by the time the reflected ping reaches you, it has gone past you. If it is going away from you, your pings can never catch up. In other words, faster than sound travel isforbidden.If you make one more assumptionthe speed of the pings is the same for all bats regardless of their state of motionyou derive a special relativity for bats where the speed of sound is the fundamental property of space and time!

We have to dig a little deeper and appreciate that space is no more real than time. Space is a cognitive construct created out of our sensory inputs. If the sense modality (light for us, sound for bats) has a finite speed, that speed will become a fundamental property of the resultant space. And space and time will be coupled through the speed of the sense modality.

This, of course, is only my own humble interpretation of SR. I wanted to post this on a new thread, but I get the feeling that people are a little too attached to their own views in this forum to be able to listen.

Leo wrote:Minkowski spacetime is one interpretation of the Lorentz transforms, but other interpretations, the original Lorentz-Poincaré Relativity or modernized versions of it with a wave model of matter (LaFreniere or Close or many others), work in a perfectly euclidean 3D space.

So we end up with process slowdown and matter contraction, but NO time dilation or space contraction. The transforms are the same though. So why does one interpretation lead to tensor metric while the others don’t? Or do they all? I lack the theoretical background to answer the question.

Hi Leo,

If you define LT as a velocity dependent deformation of an object in motion, then you can make the transformation a function of time. There won’t be any warping and complications of metric tensors and stuff. Actually what I did in my book is something along those lines (though not quite), as you know.

The trouble arises when the transformation matrix is a function of the vector is transforming. So, if you define LT as a matrix operation in a 4-D space-time, you can no longer make it a function of time through acceleration any more than you can make it a function of position (as in a velocity field, for instance.) The space-time warping is a mathematical necessity. Because of it, you lose coordinates, and the tools that we learn in our undergraduate years are no longer powerful enough to handle the problem.

Of Rotation, LT and Acceleration

In thePhilosophical Implicationsforum, there was an attempt to incorporate acceleration into Lorentz transformation using some clever calculus or numerical techniques. Such an attempt will not work because of a rather interesting geometric reason. I thought I would post the geometric interpretation of Lorentz transformation (or how to go from SR to GR) here.

Let me start with a couple of disclaimers. First of, what follows is my understanding of LT/SR/GR. I post it here with the honest belief that it is right. Although I have enough academic credentials to convince myself of my infallibility, who knows? People much smarter than me get proven wrong every day. And, if we had our way, we would prove even Einstein himself wrong right here in this forum, wouldn’t we? :D Secondly, what I write may be too elementary for some of the readers, perhaps even insultingly so. I request them to bear with it, considering that some other readers may find it illuminating. Thirdly, this post is not a commentary on the rightness or wrongness of the theories; it is merely a description of what the theories say. Or rather, my version of what they say. With those disclaimers out of the way, let’s get started

LT is a rotation in the 4-D space-time. Since it not easy to visualize 4-D space-time rotation, let’s start with a 2-D, pure space rotation. One fundamental property of a geometry (such as 2-D Euclidean space) is its metric tensor. The metric tensor defines the inner product between two vectors in the space. In normal (Euclidean or flat) spaces, it also defines the distance between two points (or the length of a vector).

Though the metric tensor has the dreadedtensorword in its name, once you define a coordinate system, it is only a matrix. For Euclidean 2-D space with x and y coordinates, it is the identity matrix (two 1’s along the diagonal). Let’s call it G. The inner product between vectors A and B is A.B = Trans(A) G B, which works out to be a_1b_1+a_2b_2. Distance (or length of A) can be defined as \sqrt{A.A}.

So far in the post, the metric tensor looks fairly useless, only because it is the identity matrix for Euclidean space. SR (or LT), on the other hand, uses Minkowski space, which has a metric that can be written with [-1, 1, 1, 1] along the diagonal with all other elements zeroassuming time t is the first component of the coordinate system. Let’s consider a 2-D Minkowski space for simplicity, with time (t) and distance (x) axes. (This is a bit of over-simplification because this space cannot handle circular motion, which is popular in some threads.) In units that make c = 1, you can easily see that the invariant distance using this metric tensor is \sqrt{x^2 - t^2}.


Anti-relativity and Superluminality

Leo wrote:I have some problems with the introductory part though, when you confront light travel effects and relativistic transforms. You correctly state that all perceptual illusions have been cleared away in the conception of Special Relativity, but you also say that these perceptual illusions remained as a subconscious basis for the cognitive model of Special Relativity. Do I understand what you mean or do I get it wrong?

The perceptual effects are known in physics; they are called Light Travel Time effects (LTT, to cook up an acronym). These effects are considered an optical illusion on the motion of the object under observation. Once you take out the LTT effects, you get the “real” motion of the object . This real motion is supposed to obey SR. This is the current interpretation of SR.

My argument is that the LTT effects are so similar to SR that we should think of SR as just a formalization of LTT. (In fact, a slightly erroneous formalization.) Many reasons for this argument:
1. We cannot disentagle theoptical illusionbecause many underlying configurations give rise to the same perception. In other words, going from what we see to what is causing our perception is a one to many problem.
2. SR coordinate transformation is partially based on LTT effects.
3. LTT effects are stronger than relativistic effects.

Probably for these reasons, what SR does is to say that what we see is what it is really like. It then tries to mathematically describe what we see. (This is what I meant by a formaliztion. ) Later on, when we figured out that LTT effects didn’t quite match with SR (as in the observation ofapparentsuperluminal motion), we thought we had totake outthe LTT effects and then say that the underlying motion (or space and time) obeyed SR. What I’m suggesting in my book and articles is that we should just guess what the underlying space and time are like and work out what our perception of it will be (because going the other way is an ill-posed one-to-many problem). My first guess, naturally, was Galilean space-time. This guess results in a rather neat and simple explantions of GRBs and DRAGNs as luminal booms and their aftermath.