Archivo de la etiqueta: fuentes de radio

Viaje Light Efectos Tiempo y Características cosmológicos

Este artículo no publicado es una secuela de mi trabajo anterior (también publicado aquí como “Son fuentes de radio y explosiones de rayos gamma Luminal Plumas?“). Esta versión blog contiene el resumen, introducción y conclusiones. La versión completa del artículo está disponible como un archivo PDF.

.

Resumen

Efectos del tiempo de viaje de luz (LTT) son una manifestación óptica de la velocidad finita de la luz. También pueden considerarse limitaciones de percepción de la imagen cognitiva de espacio y tiempo. En base a esta interpretación de los efectos LTT, hemos presentado recientemente un nuevo modelo hipotético de la variación temporal y espacial del espectro de explosiones de rayos gamma (GRB) y fuentes de radio. En este artículo, tomamos el análisis más allá y muestran que los efectos LTT pueden proporcionar un buen marco para describir tales características cosmológicas como la observación de corrimiento al rojo de un universo en expansión, y la radiación del fondo cósmico de microondas. La unificación de estos fenómenos aparentemente distintas a muy diferentes escalas de longitud y tiempo, junto con su simplicidad conceptual, pueden ser considerados como indicadores de la curiosa utilidad de este marco, si no su validez.

Introducción

La velocidad finita de la luz juega un papel importante en la forma en que percibimos la distancia y velocidad. Este hecho casi no debería ser una sorpresa, ya que sabemos que las cosas no son como las vemos. El sol que vemos, por ejemplo, Ya es de ocho minutos de edad para el momento en que lo vemos. Este retraso es trivial; si queremos saber lo que está pasando en el sol ahora, todo lo que tenemos que hacer es esperar durante ocho minutos. Nosotros, sin embargo,, Tiene que “correcta” esta distorsión en nuestra percepción debido a la velocidad finita de la luz antes de que podamos confiar en lo que vemos.

Lo que es sorprendente (y rara vez resaltado) es que cuando se trata de detectar el movimiento, no podemos respaldar a calcular de la misma manera sacamos la demora en ver el sol. Si vemos un cuerpo celeste que se mueve a una improbablemente alta velocidad, no podemos averiguar qué velocidad y en qué dirección es “realmente” moviéndose sin hacer supuestos adicionales. Una forma de manejar esta dificultad es atribuir las distorsiones en nuestra percepción del movimiento de las propiedades fundamentales de la arena de la física — espacio y el tiempo. Otra línea de acción es la de aceptar la desconexión entre nuestra percepción y la subyacente “realidad” y tratar con él de alguna manera.

Explorando la segunda opción, asumimos una realidad subyacente que da origen a nuestra imagen percibida. Tenemos el modelo aún más esta realidad subyacente como obedeciendo a la mecánica clásica, y trabajar por nuestra imagen percibida a través del aparato de la percepción. En otras palabras, no atribuimos las manifestaciones de la velocidad finita de la luz a las propiedades de la realidad subyacente. En lugar, trabajamos nuestra imagen percibida que este modelo predice y verifica si las propiedades que sí observamos pueden originar de esta limitación perceptual.

Espacio, los objetos en él, y su movimiento son, en gran, el producto de la percepción óptica. Uno tiende a dar por sentado que la percepción de la realidad surge como uno percibe que. En este artículo, tomamos la posición de que lo que percibimos es una imagen incompleta o distorsionada de una realidad subyacente. Además, estamos probando la mecánica clásica de la realidad subyacente (para lo cual utilizamos términos como absoluta, la realidad noumenal o física) eso no causan nuestra percepción para ver si se ajusta a nuestra imagen percibida (que podemos referirnos a la realidad como detectado o fenomenal).

Tenga en cuenta que no estamos implicando que las manifestaciones de la percepción son meros delirios. No son; son de hecho parte de nuestra realidad detectada porque la realidad es un resultado final de la percepción. Esta percepción puede estar detrás de la famosa frase de Goethe, “Ilusión óptica es verdad óptica.”

Aplicamos esta línea de pensamiento a un problema de física recientemente. Nos fijamos en la evolución espectral de un GRB y nos pareció que es muy similar a la de un estampido sónico. Utilizando este hecho, presentamos un modelo para PSG como nuestra percepción de un “luminal” auge, en el entendido de que es nuestra imagen percibida de la realidad que obedece a la invariancia de Lorentz y nuestro modelo de la realidad subyacente (haciendo que la imagen percibida) pueda violar la física relativista. El acuerdo notable entre el modelo y las características observadas, sin embargo, extendido más allá de los GRBs a fuentes de radio simétricos, que también puede ser considerado como efectos de percepción de barreras luminales hipotéticos.

En este artículo, nos fijamos en otras implicaciones del modelo. Comenzamos con las similitudes entre el tiempo de recorrido de luz (LTT) efectos y la transformación de coordenadas en la Relatividad Especial (SR). Estas similitudes son de extrañar, porque SR se deriva en parte basado en efectos LTT. Consecuentemente, se propone una interpretación de SR como una formalización de efectos LTT y estudiamos unos fenómenos cosmológicos observados a la luz de esta interpretación.

Las similitudes entre Viaje de Luz Efectos Tiempo y SR

La relatividad especial busca una transformación de coordenadas lineal entre sistemas de coordenadas en movimiento con respecto a la otra. Podemos rastrear el origen de la linealidad a un supuesto oculto de la naturaleza del espacio y el tiempo integrado en SR, como dice Einstein: “En primer lugar está claro que las ecuaciones deben ser lineales en cuenta las propiedades de homogeneidad que atribuimos a espacio y tiempo.” Debido a esta suposición de linealidad, la derivación original de las ecuaciones de transformación ignora la asimetría entre acercamiento y retroceso de los objetos. Ambos se aproxima y los objetos que retroceden pueden ser descrito por dos sistemas que siempre se alejan unas de otras a coordinar. Por ejemplo, si un sistema K se está moviendo con respecto a otro sistema k a lo largo del eje X positivo de k, a continuación, un objeto en reposo en K en una positiva x está en retroceso, mientras que otro objeto a la negativa x se acerca a un observador en el origen de k.

La transformación de coordenadas en el artículo original de Einstein se deriva, en parte, una manifestación del tiempo de viaje de luz (LTT) efectos y en la imposición de la constancia de la velocidad de la luz en todos los marcos inerciales. Esto es más evidente en el primer experimento mental, donde los observadores que se mueven con una varilla encuentran sus relojes no sincronizados debido a la diferencia en los tiempos de viaje de luz a lo largo de la longitud de la varilla. Sin embargo, en la interpretación actual de SR, la transformación de coordenadas se considera una propiedad básica del espacio y el tiempo.

Una dificultad que surge de esta interpretación de SR es que la definición de la velocidad relativa entre los dos marcos de inercia se convierte en ambigua. Si se trata de la velocidad del bastidor móvil según lo medido por el observador, entonces el movimiento superluminal observado en los chorros de radio a partir de la región del núcleo se convierte en una violación de SR. Si se trata de una velocidad que hay que deducir por considerar los efectos LT, entonces tenemos que emplear el supuesto ad-hoc extra que superluminality está prohibido. Estas dificultades sugieren que puede ser mejor para separar la luz de los efectos del tiempo de viaje desde el resto de SR.

En esta sección, vamos a considerar el espacio y el tiempo como una parte del modelo cognitivo creado por el cerebro, y argumentan que la relatividad especial se aplica al modelo cognitivo. La realidad absoluta (de los cuales el SR-como el espacio-tiempo es nuestra percepción) no tiene que obedecer las restricciones de SR. En particular, objetos no se limitan a velocidades subluminal, pero pueden aparecer a nosotros como si se limitan a velocidades subluminal en nuestra percepción del espacio y el tiempo. Si separamos los efectos LTT del resto de SR, podemos comprender una amplia variedad de fenómenos, como veremos en este artículo.

A diferencia de SR, consideraciones basadas en efectos LTT producen intrínsecamente diferente conjunto de leyes de transformación de objetos que se aproximan a un observador y los aleja de él. Más generalmente, la transformación depende del ángulo entre la velocidad del objeto y la línea de visión del observador. Puesto que las ecuaciones de transformación basados ​​en efectos LTT tratan a acercarse y retroceso objetos asimétricamente, que proporcionan una solución natural a la paradoja de los gemelos, por ejemplo.

Conclusiones

Dado que el espacio y el tiempo son parte de una realidad creada de entradas de luz a nuestros ojos, algunas de sus propiedades son manifestaciones de efectos LTT, especialmente en nuestra percepción del movimiento. La absoluta, realidad física generando presumiblemente las entradas de luz no tiene que obedecer las propiedades que atribuimos a nuestro espacio y el tiempo percibido.

Hemos demostrado que los efectos LTT son cualitativamente idénticas a las de SR, señalando que SR sólo considera los marcos de referencia que retroceden unos de otros. Esta similitud no es sorprendente porque la transformación de coordenadas en SR se deriva parcialmente basado en efectos LTT, y en parte en el supuesto de que la luz viaja a la misma velocidad con respecto a todos los sistemas inerciales. En tratándolo como una manifestación de la LTT, que no nos dirigimos a la principal motivación de SR, que es una formulación covariante de las ecuaciones de Maxwell. Puede ser posible separar la covarianza de la electrodinámica de la transformación de coordenadas, aunque no se intenta en este artículo.

A diferencia de SR, LTT efectos son asimétricos. Esta asimetría proporciona una solución a la paradoja de los gemelos y una interpretación de las violaciónes de causalidad asumidos asociado con superluminality. Además, la percepción de superluminality es modulada por efectos LTT, y explica gamma Los estallidos de rayos y chorros simétricos. Como mostramos en el artículo, percepción del movimiento superluminal también tiene una explicación para los fenómenos cosmológicos, como la expansión de la radiación de fondo de microondas cósmico universo y. LTT efectos deben ser considerados como una limitación fundamental en nuestra percepción, y por consiguiente en la física, en lugar de como una explicación conveniente para fenómenos aislados.

Teniendo en cuenta que nuestra percepción se filtra a través de efectos LTT, tenemos que deconvolute desde nuestra realidad percibida con el fin de comprender la naturaleza de lo absoluto, realidad física. Esta deconvolución, sin embargo, resultados en múltiples soluciones. Así, la absoluta, la realidad física está más allá de nuestro alcance, y cualquier asumido propiedades de la realidad absoluta sólo pueden ser validados a través de lo bien que la resultante percibida realidad está de acuerdo con nuestras observaciones. En este artículo, asumimos que la realidad subyacente obedece nuestros mecánica clásica intuitivamente obvias y preguntamos cómo sería percibido como una realidad cuando se filtra a través de los efectos del tiempo de viaje de luz. Hemos demostrado que este tratamiento en particular podría explicar ciertos fenómenos astrofísicos y cosmológicos que observamos.

La transformación de coordenadas en SR puede ser visto como una redefinición del espacio y el tiempo (o, más generalmente, realidad) con el fin de acomodar las distorsiones en nuestra percepción de movimiento debido a los efectos del tiempo de viaje de luz. Uno puede tener la tentación de argumentar que SR se aplica a la “reales” espacio y el tiempo, no nuestra percepción. Esta línea de argumentación plantea la pregunta, lo que es real? La realidad es solamente un modelo cognitivo creada en nuestro cerebro a partir de nuestras entradas sensoriales, entradas visuales siendo el más significativo. El espacio en sí es una parte de este modelo cognitivo. Las propiedades del espacio son un mapeo de las limitaciones de nuestra percepción.

La opción de aceptar nuestra percepción como una verdadera imagen de la realidad y la redefinición del espacio y el tiempo como se describe en la relatividad especial de hecho equivale a una elección filosófica. La alternativa que se presenta en el artículo se inspira en la vista de la neurociencia moderna que la realidad es un modelo cognitivo del cerebro basado en nuestras entradas sensoriales. La adopción de esta alternativa nos reduce a adivinar la naturaleza de la realidad absoluta y comparando su proyección predicho a nuestra percepción real. Se puede simplificar y aclarar algunas teorías de la física y explicar algunos fenómenos enigmáticos en nuestro universo. Sin embargo, esta opción es otra postura filosófica contra la realidad absoluta incognoscible.

Son fuentes de radio y explosiones de rayos gamma Luminal Plumas?

Este artículo fue publicado en el International Journal of Modern Physics D (IJMP–D) en 2007. Pronto se convirtió en el Top Consultado el artículo de la revista por Ene 2008.

Aunque pueda parecer un artículo de la física núcleo duro, de hecho, es una aplicación de la idea filosófica que impregna este blog y mi libro.

Esta versión blog contiene el resumen, introducción y conclusiones. La versión completa del artículo está disponible como un archivo PDF.

Diario de Referencia: IJMP-D completa. 16, No. 6 (2007) pp. 983–1000.

.

Resumen

El reblandecimiento de la luminiscencia residual de GRB tiene similitudes notables con la evolución de frecuencia en un estampido sónico. En el extremo delantero del cono boom sónico, la frecuencia es infinito, muy similar a una explosión de rayos gamma (GRB). En el interior del cono, la frecuencia disminuye rápidamente a los rangos infrasónicas y la fuente de sonido aparece en dos lugares al mismo tiempo, imitando las fuentes de radio de doble lobulado. Aunque “luminal” auge viola la invariancia Lorentz y por lo tanto está prohibido, es tentador trabajar en los detalles y compararlos con los datos existentes. Esta tentación es aún mayor por la superluminality observada en los objetos celestes asociados con fuentes de radio y algunos GRBs. En este artículo, se calcula la variación temporal y espacial de las frecuencias observadas de un auge luminal hipotética y muestran notable similitud entre nuestros cálculos y observaciones actuales.

Introducción

Un boom sónico se crea cuando un objeto emisor de sonido pasa a través del medio más rápido que la velocidad del sonido en ese medio. Como el objeto atraviesa el medio, el sonido que emite crea un frente de onda cónica, como se muestra en la figura 1. La frecuencia de sonido en este frente de onda es infinita debido al cambio Doppler. La frecuencia detrás del frente de onda cónica cae dramáticamente y pronto alcanza el rango infrasonic. Esta evolución frecuencia es notablemente similar a persistencia luminosa evolución de un estallido de rayos gamma (GRB).

Sonic Boom
Figura 1:. La evolución frecuencia de las ondas de sonido como resultado del efecto Doppler en movimiento supersónico. El objeto supersónico S se mueve a lo largo de la flecha. Las ondas de sonido se "invierten" debido al movimiento, de manera que las ondas emitidas en dos puntos diferentes en la combinación de trayectoria y alcanzan el observador (en O) al mismo tiempo. Cuando el frente de onda golpea el observador, la frecuencia es infinito. Después de esto, la frecuencia disminuye rápidamente.

Explosiones de rayos gamma son muy breves, pero intensos destellos de \gamma rayos en el cielo, que dura desde unos pocos milisegundos a varios minutos, y se consideran actualmente emanar de colapsos estelares cataclismos. Los cortos destellos (las prontas emisiones) van seguidos de un resplandor de energías progresivamente más suaves. Así, la inicial \gamma rayos se sustituyen rápidamente por rayos X, la luz e incluso ondas de radio frecuencia. Este ablandamiento del espectro se ha conocido desde hace bastante tiempo, y fue descrito por primera vez usando una hipernova (bola de fuego) modelo. En este modelo, una bola de fuego en expansión relativista produce la \gamma emisión, y el espectro se ablanda como la bola de fuego se enfría. El modelo calcula la energía liberada en la \gamma región 10^ {53}10^ {54} ergs en unos segundos. Esta salida de energía es similar a alrededor 1000 veces la energía total liberada por el sol durante toda su vida útil.

Más recientemente, un decaimiento inversa de la energía pico con constante de tiempo variables se ha utilizado para ajustarse empíricamente la evolución en el tiempo observado de la energía de pico utilizando un modelo colapsar. Según este modelo, GRBs se producen cuando la energía de las corrientes altamente relativistas en colapsos estelares se disipa, con los chorros de radiación resultantes ángulo correctamente con respecto a nuestra línea de visión. El modelo colapsar estima una producción de energía más bajos porque la energía liberada no es isótropo, pero se concentró a lo largo de los chorros. Sin embargo, el ritmo de los acontecimientos Collapsar tiene que ser corregido para la fracción del ángulo sólido en el que los chorros de radiación pueden aparecer como GRBs. GRBs se observan aproximadamente a razón de una vez al día. Así, la tasa esperada de los eventos cataclísmicos que accionan los GRBs es del orden de 10^410^6 por día. Debido a esta relación inversa entre la tasa y la salida de energía estimada, la energía total liberada por observada PSG sigue siendo el mismo.

Si pensamos en un GRB como un efecto similar a la explosión sónica en movimiento supersónico, el requerimiento de energía catastrófica asumido vuelve superflua. Otra característica de nuestra percepción del objeto supersónico es que escuchamos a la fuente de sonido a las dos de ubicación diferente, como al mismo tiempo, como se ilustra en la figura 2. Este curioso efecto tiene lugar porque las ondas sonoras emitidas en dos puntos diferentes en la trayectoria del objeto supersónico alcanzan el observador en el mismo instante en el tiempo. El resultado final de este efecto es la percepción de un par simétricamente retroceso de fuentes de sonido, que, en el mundo luminal, es una buena descripción de las fuentes de radio simétricos (Doble fuente de radio asociada con Núcleo Galáctico o Dragn).

superluminality
Figura 2:. El objeto está volando de a A a través y B a una velocidad supersónica constante. Imagine que el objeto emite sonido durante su recorrido. El sonido emitido en el punto (que está cerca del punto más cercano de aproximación B) llega al observador en O antes de que el sonido emitido antes en . El instante en que el sonido en un punto anterior alcanza el observador, el sonido emitido en un punto mucho más tarde A También alcanza O. Así, el sonido emitido al A y alcanza el observador al mismo tiempo, dando la impresión de que el objeto está en estos dos puntos al mismo tiempo. En otras palabras, el observador escucha dos objetos en movimiento lejos de en lugar de un objeto real.

Fuentes de radio suelen ser simétricas y parecen asociarse con núcleos galácticos, consideradas actualmente manifestaciones de singularidades espacio-tiempo o estrellas de neutrones. Las diferentes clases de estos objetos asociados a núcleos galácticos activos (AGN) fueron encontrados en los últimos cincuenta años. Figura 3 muestra el radio galaxia Cygnus A, un ejemplo de una fuente de radio tal y uno de los objetos de radio más brillantes. Muchas de sus características son comunes a la mayoría de las fuentes de radio extragalácticas: los dobles lóbulos simétricos, una indicación de un núcleo, una apariencia de chorros alimentan los lóbulos y los puntos de acceso. Algunos investigadores han informado de características cinemáticas más detalladas, como el movimiento propio de los puntos calientes en los lóbulos.

Fuentes de radio simétricos (galáctico o extragaláctico) y GRBs pueden parecer fenómenos completamente distintos. Sin embargo, sus núcleos muestran una evolución temporal similar en el pico de energía, pero con muy diferentes constantes de tiempo. Los espectros de GRBs evolucionar rápidamente de \gamma región a un resplandor óptico o incluso RF, similar a la evolución espectral de los puntos de acceso de una fuente de radio a medida que avanzan desde el núcleo a los lóbulos. Otras similitudes han comenzado a atraer la atención en los últimos años.

Este artículo explora las similitudes entre una hipotética “luminal” auge y estos dos fenómenos astrofísicos, aunque tal auge luminal está prohibido por la invariancia Lorentz. El tratamiento de los PSG como una manifestación de un hipotético resultado de auge luminales en un modelo que unifica estos dos fenómenos y hace predicciones detalladas de sus cinemática.

CygA
Figura 3:.El chorro de la radio y de los lóbulos de la galaxia de radio hyperluminous Cygnus A. Los puntos de acceso en los dos lóbulos, la región del núcleo y los chorros son claramente visibles. (Reproducido de una imagen cortesía de NRAO / AUI.)

Conclusiones

En este artículo, nos fijamos en la evolución espacio-temporal de un objeto supersónico (tanto en su posición y la frecuencia del sonido que escuchamos). Hemos demostrado que se parece mucho a los GRBs y DRAGNs si fuéramos a extender los cálculos a la luz, aunque un auge luminal requeriría movimiento superluminal y por lo tanto está prohibido.

Esta dificultad a pesar, presentamos un modelo unificado de explosiones de rayos gamma y el jet como fuentes de radio basado en el movimiento superluminal mayor. Hemos demostrado que un solo objeto superluminar volando a través de nuestro campo de visión nos aparecería como la separación simétrica de dos objetos a partir de un núcleo fijo. Usando este hecho como el modelo para jets simétricas y GRBs, explicamos sus características cinemáticas cuantitativamente. En particular, demostramos que el ángulo de separación de los puntos de acceso era parabólica en el tiempo, y los desplazamientos al rojo de los dos puntos de acceso eran casi idénticos entre sí. Incluso el hecho de que los espectros de los puntos de acceso están en la región de frecuencia de radio se explica asumiendo movimiento hyperluminal y el consiguiente desplazamiento hacia el rojo de la radiación del cuerpo negro de una estrella típica. La evolución en el tiempo de la radiación del cuerpo negro de un objeto superlumínico es completamente consistente con el ablandamiento de los espectros observados en GRB y fuentes de radio. Adicionalmente, nuestro modelo explica por qué hay corrimiento al azul significativa en las regiones centrales de las fuentes de radio, qué fuentes de radio parecen estar asociados con galaxias ópticas y por qué GRBs aparecen en puntos aleatorios sin indicación antes de su inminente aparición.

A pesar de que no se ocupa de las cuestiones de la energética (el origen de superluminality), nuestro modelo presenta una opción interesante basado en cómo íbamos a percibir el movimiento superluminal hipotética. Presentamos un conjunto de predicciones y los comparó con los datos existentes de DRAGNs y GRBs. Las características tales como el azul del núcleo, la simetría de los lóbulos, el transitorio \gamma y estallidos de rayos-X, medido la evolución de los espectros a lo largo de todo el chorro de encontrar explicaciones naturales y simples en este modelo como efectos perceptivos. Animado por este éxito inicial, podemos aceptar nuestro modelo basado en el auge luminal como modelo de trabajo para estos fenómenos astrofísicos.

Se ha de destacar que los efectos perceptuales pueden enmascararse como aparentes violaciónes de la física tradicional. Un ejemplo de tal efecto es el movimiento aparente superlumínico, que fue explicado y anticipado en el contexto de la teoría especial de la relatividad, incluso antes de que se observó de hecho. Aunque la observación de movimiento superlumínico fue el punto de partida detrás del trabajo presentado en este artículo, que no es en absoluto una indicación de la validez de nuestro modelo. La similitud entre un estampido sónico y un auge luminal hipotética en la evolución espacio-temporal y espectral se presenta aquí como una curiosa, aunque probablemente poco sólida, base de nuestro modelo.

Una lata, sin embargo, argumentar que la teoría especial de la relatividad (SR) no se ocupa de superluminality y, por lo tanto,, auges de movimiento y luminales superlumínicas no sean incompatibles con SR. Como se desprende de las declaraciones de apertura de documento original de Einstein, la principal motivación para la SR es una formulación covariante de las ecuaciones de Maxwell, que requiere una transformación de coordenadas derivadas basa en parte en el tiempo de viaje de luz (LTT) efectos, y en parte en el supuesto de que la luz viaja a la misma velocidad con respecto a todos los sistemas inerciales. A pesar de esta dependencia de LTT, los efectos LTT se supone actualmente para aplicar en un espacio-tiempo que obedece SR. SR es una redefinición del espacio y el tiempo (o, más generalmente, realidad) con el fin de alojar a sus dos postulados básicos. Puede ser que hay una estructura más profunda de espacio-tiempo, de los cuales SR es sólo nuestra percepción, filtrado a través de los efectos LTT. Tratándolos como una ilusión óptica que se aplicará en un espacio-tiempo que obedece SR, podemos ser doble contarlos. Podemos evitar la doble contabilidad, desentrañando la covarianza de las ecuaciones de Maxwell de la parte transformaciones de coordenadas de SR. El tratamiento de los efectos LTT separado (sin atribuir sus consecuencias para la naturaleza básica del espacio y el tiempo), podemos acomodar superluminality y obtener explicaciones elegantes de los fenómenos astrofísicos que se describen en este artículo. Nuestra explicación unificada para los GRBs y las fuentes de radio simétricos, por lo tanto,, tiene implicaciones de largo alcance como como nuestra comprensión básica de la naturaleza del espacio y el tiempo.


Foto por Foto Goddard de la NASA y Video