Tag Archives: metaphysics

Everything and Nothing

I once attended a spiritual self-help kind of course. Toward the end of the course, there was this exercise where the teacher would ask the question, “What are you?” Whatever answer the participant came up with, the teacher would tear it apart. For instance, if I said, “I work for a bank as a quantitative finance professional,” she would say, “Yeah, that’s what you do, but what are you?” If I said, “I am Manoj,” she would say, “Yeah, that’s only your name, what are you?” You get the idea. To the extent that it is a hard question to answer, the teacher always gets the upper hand.

Not in my case though. Luckily for me, I was the last one to answer the question, and I had the benefit of seeing how this exercise evolved. Since I had time, I decided to cook up something substantial. So when my turn came, here was my response that pretty much floored the teacher. I said, “I am a little droplet of consciousness so tiny that I’m nothing, yet part of something so big that I’m everything.” As I surmised, she couldn’t very well say, “Yeah, sure, but what are you?” In fact, she could’ve said, “That’s just some serious bullshit, man, what the heck are you?” which is probably what I would’ve done. But my teacher, being the kind and gentle soul she is, decided to thank me gravely and move on.

Now I want to pick up on that theme and point out that there is more to that response than something impressive that I made up that day to sound really cool in front of a bunch of spiritualites. The tininess part is easy. Our station in this universe is so mindbogglingly tiny that a sense of proportion is the one thing we cannot afford to have, if we are to keep our sanity — as Douglas Adams puts it in one of his books. What goes for the physical near-nothingness of our existence in terms of space also applies to the temporal dimension. We exist for a mere fleeing instant when put in the context of any geological or cosmological timescale. So when I called myself a  “little” droplet, I was being kind, if anything.

But being part of something so vast — ah, that is the interesting bit. Physically, there is not an atom in my body that wasn’t part of a star somewhere sometime ago. We are all made up of stardust, from the ashes of dead stars. (Interesting they say from dust to dust and from ashes to ashes, isn’t it?) So, those sappy scenes in sentimental flicks, where the dad points to the star and says, “Your mother is up there sweetheart, watching over you,” have a bit of scientific truth to them. All the particles in my body will end up in a star (a red giant, in our case); the only stretch is that it will take another four and half billion years. But it does mean that the dust will live forever and end up practically everywhere through some supernova explosion, if our current understanding of how it all works is correct (which it is not, in my opinion, but that is another story). This eternal existence of a the purely physical kind is what Schopenhauer tried to draw consolation from, I believe, but it really is no consolation, if you ask me. Nonetheless, we are all part of something much bigger, spatially and temporally – in a purely physical sense.

At a deeper level, my being part of everything comes from the fact that we are both the inside and the outside of things. I know it sounds like I smoked something I wouldn’t like my children to smoke. Let me explain; this will take a few words. You see, when we look at a star, we of course see a star. But what we mean by “see a star” is just that there are some neurons in our brain firing in a particular pattern. We assume that there is a star out there causing some photons to fall on our retina and create neuronal firing, which results in a cognitive model of what we call night sky and stars. We further assume that what we see (night sky and star) is a faithful representation of what is out there. But why should it be? Think of how we hear stuff. When we listen to music, we hear tonality, loudness etc, but these are only cognitive models for the frequency and amplitude of the pressure waves in the air, as we understand sound right now. Frequency and amplitude are very different beasts compared to tonality and loudness — the former are physical causes, the latter are perceptual experiences. Take away the brain, there is no experience, ergo there is no sound — which is the gist of the overused cocktail conundrum of the falling tree in a deserted forest. If you force yourself to think along these lines for a while, you will have to admit that whatever is “out there” as you perceive it is only in your brain as cognitive constructs. Hence my hazy statement about we are both the inside and the outside of things. So, from the perspective of cognitive neuroscience, we can argue that we are everything — the whole universe and our knowledge of it is all are patterns in our brain. There is nothing else.

Want to go even deeper? Well, the brain itself is part of the reality (which is a cognitive construct) created by the brain. So are the air pressure waves, photons, retina, cognitive neuroscience etc. All convenient models in our brains. That, of course, is an infinite regression, from which there is no escape. It is a logical abyss where we can find no rational foothold to anchor our thoughts and crawl out, which naturally leads to what we call the infinite, the unknowable, the absolute, the eternal — Brahman.

I was, of course, thinking of Brahman ( and the notion that we are all part of that major oneness) when I cooked up that everything-and-nothing response. But it is all the same, isn’t it, whichever way you look at it? Well, may be not; may be it is just that I see it that way. If the only tool you have is a hammer, all the problems in the world look like nails to you. May be I’m just hammering in the metaphysical nails whenever and wherever I get a chance. To me, all schools of thought seem to converge to similar notions. Reminds of that French girl I was trying impress long time ago. I said to her, rather optimistically, “You know, you and I think alike, that’s what I like about you.” She replied, “Well, there is only one way to think, if you think at all. So no big deal!”  Needless to say I didn’t get anywhere with her.

Dualism

After being called one of the top 50 philosophy bloggers, I feel almost obliged to write another post on philosophy. This might vex Jat who, while appreciating the post on my first car, was somewhat less than enthusiastic about my deeper thoughts. Also looking askance at my philosophical endeavors would be a badminton buddy of mine who complained that my posts on death scared the bejesus out of him. But, what can I say, I have been listening to a lot of philosophy. I listened to the lectures by Shelly Kagan on just that dreaded topic of death, and by John Searle (again) on the philosophy of mind.

Listening to these lectures filled me with another kind of dread. I realized once again how ignorant I am, and how much there is to know, think and figure out, and how little time is left to do all that. Perhaps this recognition of my ignorance is a sign of growing wisdom, if we can believe Socrates. At least I hope it is.

One thing I had some misconceptions about (or an incomplete understanding of) was this concept of dualism. Growing up in India, I heard a lot about our monistic philosophy called Advaita. The word means not-two, and I understood it as the rejection of the Brahman and Maya distinction. To illustrate it with an example, say you sense something — like you see these words in front of you on your computer screen. Are these words and the computer screen out there really? If I were to somehow generate the neuronal firing patterns that create this sensation in you, you would see these words even if they were not there. This is easy to understand; after all, this is the main thesis of the movie Matrix. So what you see is merely a construct in your brain; it is Maya or part of the Matrix. What is causing the sensory inputs is presumably Brahman. So, to me, Advaita meant trusting only the realness of Brahman while rejecting Maya. Now, after reading a bit more, I’m not sure that was an accurate description at all. Perhaps that is why Ranga criticized me long time ago.

In Western philosophy, there is a different and more obvious kind of dualism. It is the age-old mind-matter distinction. What is mind made of? Most of us think of mind (those who think of it, that is) as a computer program running on our brain. In other words, mind is software, brain is hardware. They are two different kinds of things. After all, we pay separately for hardware (Dell) and software (Microsoft). Since we think of them as two, ours is an inherently dualistic view. Before the time of computers, Descartes thought of this problem and said there was a mental substance and a physical substance. So this view is called Cartesian Dualism. (By the way, Cartesian coordinates in analytic geometry came from Descartes as well — a fact that might enhance our respect for him.) It is a view that has vast ramifications in all branches of philosophy, from metaphysics to theology. It leads to the concepts of spirit and souls, God, afterlife, reincarnation etc., with their inescapable implications on morality.

There are philosophers who reject this notion of Cartesian dualism. John Searle is one of them. They embrace a view that mind is an emergent property of the brain. An emergent property (more fancily called an epiphenomenon) is something that happens incidentally along with the main phenomenon, but is neither the cause nor the effect of it. An emergent property in physics that we are familiar with is temperature, which is a measure of the average velocity of a bunch of molecules. You cannot define temperature unless you have a statistically significant collection of molecules. Searle uses the wetness of water as his example to illustrate emergence of properties. You cannot have a wet water molecule or a dry one, but when you put a lot of water molecules together you get wetness. Similarly, mind emerges from the physical substance of the brain through physical processes. So all the properties that we ascribe to mind are to be explained away as physical interactions. There is only one kind of substance, which is physical. So this monistic philosophy is called physicalism. Physicalism is part of materialism (not to be confused with its current meaning — what we mean by a material girl, for instance).

You know, the trouble with philosophy is that there are so many isms that you lose track of what is going on in this wild jungle of jargonism. If I coined the word unrealism to go with my blog and promoted it as a branch of philosophy, or better yet, a Singaporean school of thought, I’m sure I can make it stick. Or perhaps it is already an accepted domain?

All kidding aside, the view that everything on the mental side of life, such as consciousness, thoughts, ideals etc., is a manifestation of physical interactions (I’m restating the definition of physicalism here, as you can see) enjoys certain currency among contemporary philosophers. Both Kagan and Searle readily accept this view, for example. But this view is in conflict with what the ancient Greek philosophers like Socrates, Plato and Aristotle thought. They all believed in some form of continued existence of a mental substance, be it the soul, spirit or whatever. All major religions have some variant of this dualism embedded in their beliefs. (I think Plato’s dualism is of a different kind — a real, imperfect world where we live on the one hand, and an ideal perfect world of forms on the other where the souls and Gods live. More on that later.) After all, God has to be made up of a spiritual “substance” other than a pure physical substance. Or how could he not be subject to the physical laws that we, mere mortals, can comprehend?

Nothing in philosophy is totally disconnected from one another. A fundamental stance such as dualism or monism that you take in dealing with the questions on consciousness, cognition and mind has ramifications in what kind of life you lead (Ethics), how you define reality (Metaphysics), and how you know these things (Epistemology). Through its influence on religions, it may even impact our political power struggles of our troubled times. If you think about it long enough, you can connect the dualist/monist distinction even to aesthetics. After all, Richard Pirsig did just that in his Zen and the Art of Motorcycle Maintenance.

As they say, if the only tool you have is a hammer, all problems begin to look like nails. My tool right now is philosophy, so I see little philosophical nails everywhere.

The Unreal Universe

The Unreal Universe

We know that our universe is a bit unreal. The stars we see in the night sky, for instance, are not really there. They may have moved or even died by the time we get to see them. This delay is due to the time it takes for light from the distant stars and galaxies to reach us. We know of this delay. The sun that we see now is already eight minutes old by the time we see it. This delay is not a big deal; if we want to know what is going on at the sun right now, all we have to do is to wait for eight minutes. We do have to “correct” for the delay in our perception due to the finite speed of light before we can trust what we see.

Now, this effect raises an interesting question — what is the “real” thing that we see? If seeing is believing, the stuff that we see should be the real thing. Then again, we know of the light travel time effect. So we should correct what we see before believing it. What then does “seeing” mean? When we say we see something, what do we really mean?

Seeing involves light, obviously. It is the finite (albeit very high) speed of light influences and distorts the way we see things. This fact should hardly come as a surprise because we do know that there is a delay in seeing objects like stars. What is surprising (and seldom highlighted) is that when it comes to seeing moving objects, we cannot back-calculate the same way we take out the delay in seeing the sun. If we see a celestial body moving at an improbably high speed, we cannot figure out how fast and in what direction it is “really” moving without making further assumptions. One way of handling this difficulty is to ascribe the distortions in our perception to the fundamental properties of the arena of physics — space and time. Another course of action is to accept the disconnection between our perception and the underlying “reality” and deal with it in some way.

This disconnect between what we see and what is out there is not unknown to many philosophical schools of thought. Phenomenalism, for instance, holds the view that space and time are not objective realities. They are merely the medium of our perception. All the phenomena that happen in space and time are merely bundles of our perception. In other words, space and time are cognitive constructs arising from perception. Thus, all the physical properties that we ascribe to space and time can only apply to the phenomenal reality (the reality as we sense it). The noumenal reality (which holds the physical causes of our perception), by contrast, remains beyond our cognitive reach.

One, almost accidental, difficulty in redefining the effects of the finite speed of light as the properties of space and time is that any effect that we do understand gets instantly relegated to the realm of optical illusions. For instance, the eight-minute delay in seeing the sun, because we can readily understand it and disassociate it from our perception using simple arithmetic, is considered a mere optical illusion. However, the distortions in our perception of fast moving objects, although originating from the same source are considered a property of space and time because they are more complex. At some point, we have to come to terms with the fact that when it comes to seeing the universe, there is no such thing as an optical illusion, which is probably what Goethe pointed out when he said, “Optical illusion is optical truth.”

More about The Unreal UniverseThe distinction (or lack thereof) between optical illusion and truth is one of the oldest debates in philosophy. After all, it is about the distinction between knowledge and reality. Knowledge is considered our view about something that, in reality, is “actually the case.” In other words, knowledge is a reflection, or a mental image of something external. In this picture, the external reality goes through a process of becoming our knowledge, which includes perception, cognitive activities, and the exercise of pure reason. This is the picture that physics has come to accept. While acknowledging that our perception may be imperfect, physics assumes that we can get closer and closer to the external reality through increasingly finer experimentation, and, more importantly, through better theorization. The Special and General Theories of Relativity are examples of brilliant applications of this view of reality where simple physical principles are relentlessly pursued using the formidable machine of pure reason to their logically inevitable conclusions.

But there is another, competing view of knowledge and reality that has been around for a long time. This is the view that regards perceived reality as an internal cognitive representation of our sensory inputs. In this view, knowledge and perceived reality are both internal cognitive constructs, although we have come to think of them as separate. What is external is not the reality as we perceive it, but an unknowable entity giving rise to the physical causes behind sensory inputs. In this school of thought, we build our reality in two, often overlapping, steps. The first step consists of the process of sensing, and the second one is that of cognitive and logical reasoning. We can apply this view of reality and knowledge to science, but in order do so, we have to guess the nature of the absolute reality, unknowable as it is.

The ramifications of these two different philosophical stances described above are tremendous. Since modern physics has embraced a non-phenomenalistic view of space and time, it finds itself at odds with that branch of philosophy. This chasm between philosophy and physics has grown to such a degree that the Nobel prize winning physicist, Steven Weinberg, wondered (in his book “Dreams of a Final Theory”) why the contribution from philosophy to physics have been so surprisingly small. It also prompts philosophers to make statements like, “Whether ‘noumenal reality causes phenomenal reality’ or whether ‘noumenal reality is independent of our sensing it’ or whether ‘we sense noumenal reality,’ the problem remains that the concept of noumenal reality is a totally redundant concept for the analysis of science.”

From the perspective of cognitive neuroscience, everything we see, sense, feel and think is the result of the neuronal interconnections in our brain and the tiny electrical signals in them. This view must be right. What else is there? All our thoughts and worries, knowledge and beliefs, ego and reality, life and death — everything is merely neuronal firings in the one and half kilograms of gooey, grey material that we call our brain. There is nothing else. Nothing!

In fact, this view of reality in neuroscience is an exact echo of phenomenalism, which considers everything a bundle of perception or mental constructs. Space and time are also cognitive constructs in our brain, like everything else. They are mental pictures our brains concoct out of the sensory inputs that our senses receive. Generated from our sensory perception and fabricated by our cognitive process, the space-time continuum is the arena of physics. Of all our senses, sight is by far the dominant one. The sensory input to sight is light. In a space created by the brain out of the light falling on our retinas (or on the photo sensors of the Hubble telescope), is it a surprise that nothing can travel faster than light?

This philosophical stance is the basis of my book, The Unreal Universe, which explores the common threads binding physics and philosophy. Such philosophical musings usually get a bad rap from us physicists. To physicists, philosophy is an entirely different field, another silo of knowledge, which holds no relevance to their endeavors. We need to change this belief and appreciate the overlap among different knowledge silos. It is in this overlap that we can expect to find great breakthroughs in human thought.

The twist to this story of light and reality is that we seem to have known all this for a long time. Classical philosophical schools seem to have thought along lines very similar to Einstein’s reasonings. The role of light in creating our reality or universe is at the heart of Western religious thinking. A universe devoid of light is not simply a world where you have switched off the lights. It is indeed a universe devoid of itself, a universe that doesn’t exist. It is in this context that we have to understand the wisdom behind the statement that “the earth was without form, and void” until God caused light to be, by saying “Let there be light.”

The Quran also says, “Allah is the light of the heavens and the earth,” which is mirrored in one of the ancient Hindu writings: “Lead me from darkness to light, lead me from the unreal to the real.” The role of light in taking us from the unreal void (the nothingness) to a reality was indeed understood for a long, long time. Is it possible that the ancient saints and prophets knew things that we are only now beginning to uncover with all our supposed advances in knowledge?

I know I may be rushing in where angels fear to tread, for reinterpreting the scriptures is a dangerous game. Such alien interpretations are seldom welcome in the theological circles. But I seek refuge in the fact that I am looking for concurrence in the metaphysical views of spiritual philosophies, without diminishing their mystical and theological value.

The parallels between the noumenal-phenomenal distinction in phenomenalism and the Brahman-Maya distinction in Advaita are hard to ignore. This time-tested wisdom on the nature of reality from the repertoire of spirituality is now being reinvented in modern neuroscience, which treats reality as a cognitive representation created by the brain. The brain uses the sensory inputs, memory, consciousness, and even language as ingredients in concocting our sense of reality. This view of reality, however, is something physics is yet to come to terms with. But to the extent that its arena (space and time) is a part of reality, physics is not immune to philosophy.

As we push the boundaries of our knowledge further and further, we are beginning to discover hitherto unsuspected and often surprising interconnections between different branches of human efforts. In the final analysis, how can the diverse domains of our knowledge be independent of each other when all our knowledge resides in our brain? Knowledge is a cognitive representation of our experiences. But then, so is reality; it is a cognitive representation of our sensory inputs. It is a fallacy to think that knowledge is our internal representation of an external reality, and therefore distinct from it. Knowledge and reality are both internal cognitive constructs, although we have come to think of them as separate.

Recognizing and making use of the interconnections among the different domains of human endeavor may be the catalyst for the next breakthrough in our collective wisdom that we have been waiting for.

Humboldt’s Gift by Saul Bellow

I first found this modern-day classic in my father’s collection some thirty years ago, which meant that he bought it right around the time it was published. Looking back at it now, and after having read the book, as usual, many times over, I am surprised that he had actually read it. May be I am underestimating him in my colossal and unwarranted arrogance, but I just cannot see how he could have followed the book. Even after having lived in the USA for half a dozen years, and read more philosophy than is good for me, I cannot keep up with the cultural references and the pace of Charlie Citrine’s mind through its intellectual twists and turns. Did my father actually read it? I wish I could ask him.

Perhaps that is the point of this book, as it is with most classics — the irreversibility and finality of death. Or may be it is my jaundiced vision painting everything yellow. But Bellow does rage against this finality of death (just like most religions do); he comically postulates that it is our metaphysical denial that hides the immortal souls watching over us. Perhaps he is right; it certainly is comforting to believe it.

There is always an element of parternality in every mentor-protégé relationship. (Forgive me, I know it is a sexist view — why not maternality?) But I probably started this post with the memories of my father because of this perceived element in the Von Humboldt Fleischer – Charlie Citrine relationship, complete with the associated feelings of guilt and remorse on the choices that had to be made.

As a book, Humboldt’s Gift is a veritable tour de force. It is a blinding blitz of erudition and wisdom, coming at you at a pace and intensity that is hard to stand up to. It talks about the painted veil, Maya, the many colored glasses staining the white radiance of eternity, and Hegel’s phenomenology as though they are like coffee and cheerios. To me, this dazzling display of intellectual fireworks is unsettling. I get a glimpse of the enormity of what is left to know, and the paucity of time left to learn it, and I worry. It is the ultimate Catch-22 — by the time you figure it all out, it is time to go, and the knowledge is useless. Perhaps knowledge has always been useless in that sense, but it is still a lot of fun to figure things out.

The book is a commentary on American materialism and the futility of idealism in our modern times. It is also about the small things where a heart finds fulfillment. Here is the setting of the story in a nutshell. Charlie Citrine, a protégé to Von Humboldt Fleischer, makes it big in his literary career. Fleischer himself, full of grandiose schemes for a cultural renaissance in America, dies a failure. Charlie’s success comes at its usual price. In an ugly divorce, his vulturous ex-wife, Denise, tries to milk him for every penny he’s worth. His mercenary mistress and a woman-and-a-half, Renata, targets his riches from other angles. Then there is the boisterous Cantabile who is ultimately harmless, and the affable and classy Thaxter who is much more damaging. The rest of the story follows some predictable, and some surprising twists. Storylines are something I stay away from in my reviews, for I don’t want to be posting spoilers.

I am sure there is a name for this style of narration that jumps back and forth in time with no regard to chronology. I first noticed it in Catch-22 and recently in Arundhati Roy’s God of Small Things. It always fills me with a kind of awe because the writer has the whole story in mind, and is revealing aspects of it at will. It is like showing different projections of a complex object. This style is particularly suited for Humboldt’s Gift, because it is a complex object like a huge diamond, and the different projections show brilliant flashes of insights. Staining the white radiance of eternity, of course.

To say that Humboldt’s Gift is a masterpiece is like saying that sugar is sweet. It goes without saying. I will read this book many more times in the future because of its educational values (and because I love the reader in my audiobook edition). I would not necessarily recommend the book to others though. I think it takes a peculiar mind, one that finds sanity only in insane gibberish, and sees unreality in all the painted veils of reality, to appreciate this book.

In short, you have to be a bit cuckoo to like it. But, by the same convoluted logic, this negative recommendation is perhaps the strongest endorsement of all. So here goes… Don’t read it. I forbid it!

The Unreal Universe – Reviewed

The Straits Times

pback-cover (17K)The national newspaper of Singapore, the Straits Times, lauds the readable and conversation style used in The Unreal Universe and recommends it to anybody who wants to learn about life, the universe and everything.

Wendy Lochner

Calling The Unreal Universe a good read, Wendy says, “It’s well written, very clear to follow for the nonspecialist.”

Bobbie Christmas

Describing The Unreal Universe as “such an insightful and intelligent book,” Bobbie says, “A book for thinking laymen, this readable, thought-provoking work offers a new perspective on our definition of reality.”

M. S. Chandramouli

M. S. Chandramouli graduated from the Indian Institute of Technology, Madras in 1966 and subsequently did his MBA from the Indian Institute of Management, Ahmedabad. After an executive career in India and Europe covering some 28 years he founded Surya International in Belgium through which he now offers business development and industrial marketing services.

Here is what he says about The Unreal Universe:

“The book has a very pleasing layout, with the right size of font and line spacing and correct content density. Great effort for a self-published book!”

“The impact of the book is kaleidoscopic. The patterns in one reader’s mind (mine, that is) shifted and re-arranged themselves with a ‘rustling noise’ more than once.””The author’s writing style is remarkably equidistant from the turgid prose of Indians writing on philosophy or religion and the we-know-it-all style of Western authors on the philosophy of science.”

“There is a sort of cosmic, background ‘Eureka!’ that seems to suffuse the entire book. Its central thesis about the difference between perceived reality and absolute reality is an idea waiting to bloom in a million minds.”

“The test on the ‘Emotionality of Faith,’ Page 171, was remarkably prescient; it worked for me!”

“I am not sure that the first part, which is essentially descriptive and philosophical, sits comfortably with the second part with its tightly-argued physics; if and when the author is on his way to winning the argument, he may want to look at three different categories of readers – the lay but intelligent ones who need a degree of ‘translation,’ the non-physicist specialist, and the physicist philosophers. Market segmentation is the key to success.”

“I think this book needs to be read widely. I am making a small attempt at plugging it by copying this to my close friends.”

Steven Bryant

Steven is a Vice President of Consulting Services for Primitive Logic, a premier Regional Systems Integrator located in San Francisco, California. He is the author of The Relativity Challenge.

“Manoj views science as just one element in the picture of life. Science does not define life. But life colors how we understand science. He challenges all readers to rethink their believe systems, to question what they thought was real, to ask “why”? He asks us to take off our “rose colored glasses” and unlock new ways of experiencing and understanding life. This thought provoking work should be required reading to anyone embarking on a new scientific journey.”

“Manoj’s treatment of time is very thought provoking. While each of our other senses – sight, sound, smell, taste and touch – are multi-dimensional, time appears to be single dimensional. Understanding the interplay of time with our other senses is a very interesting puzzle. It also opens to door to the existence possibilities of other phenomena beyond our know sensory range.”

“Manoj’s conveys a deep understanding of the interaction of our physics, human belief systems, perceptions, experiences, and even our languages, on how we approach scientific discovery. His work will challenge you to rethink what you think you know is true.”

“Manoj offers a unique perspective on science, perception, and reality. The realization that science does not lead to perception, but perception leads to science, is key to understanding that all scientific “facts” are open for re-exploration. This book is extremely thought provoking and challenges each reader the question their own beliefs.”

“Manoj approaches physics from a holistic perspective. Physics does not occur in isolation, but is defined in terms of our experiences – both scientific and spiritual. As you explore his book you’ll challenge your own beliefs and expand your horizons.”

Blogs and Found Online

From the Blog Through The Looking Glass

“This book is considerably different from other books in its approach to philosophy and physics. It contains numerous practical examples on the profound implications of our philosophical viewpoint on physics, specifically astrophysics and particle physics. Each demonstration comes with a mathematical appendix, which includes a more rigorous derivation and further explanation. The book even reins in diverse branches of philosophy (e.g. thinking from both the East and the West, and both the classical period and modern contemporary philosophy). And it is gratifying to know that all the mathematics and physics used in the book are very understandable, and thankfully not graduate level. That helps to make it much easier to appreciate the book.”

From the Hub Pages

Calling itself “An Honest Review of The Unreal Universe,” this review looks like the one used in the Straits Times.

I got a few reviews from my readers through email and online forums. I have compiled them as anonymous reviews in the next page of this post.

Click on the link below to visit the second page.

The Unreal Universe — Seeing Light in Science and Spirituality

We know that our universe is a bit unreal. The stars we see in the night sky, for instance, are not really there. They may have moved or even died by the time we get to see them. This delay is due to the time it takes for light from the distant stars and galaxies to reach us. We know of this delay.

The same delay in seeing has a lesser known manifestation in the way we perceive moving objects. It distorts our perception such that something coming towards us would look as though it is coming in faster. Strange as it may sound, this effect has been observed in astrophysical studies. Some of the heavenly bodies do look as though they are moving several times the speed of light, while their “real” speed is probably a lot lower.

Now, this effect raises an interesting question–what is the “real” speed? If seeing is believing, the speed we see should be the real speed. Then again, we know of the light travel time effect. So we should correct the speed we see before believing it. What then does “seeing” mean? When we say we see something, what do we really mean?

Light in Physics

Seeing involves light, obviously. The finite speed of light influences and distorts the way we see things. This fact should hardly come as a surprise because we do know that things are not as we see them. The sun that we see is already eight minutes old by the time we see it. This delay is not a big deal; if we want to know what is going on at the sun now, all we have to do is to wait for eight minutes. We, nonetheless, have to “correct” for the distortions in our perception due to the finite speed of light before we can trust what we see.

What is surprising (and seldom highlighted) is that when it comes to sensing motion, we cannot back-calculate the same way we take out the delay in seeing the sun. If we see a celestial body moving at an improbably high speed, we cannot figure out how fast and in what direction it is “really” moving without making further assumptions. One way of handling this difficulty is to ascribe the distortions in our perception to the fundamental properties of the arena of physics — space and time. Another course of action is to accept the disconnection between our perception and the underlying “reality” and deal with it in some way.

Einstein chose the first route. In his groundbreaking paper over a hundred years ago, he introduced the special theory of relativity, in which he attributed the manifestations of the finite speed of light to the fundamental properties of space and time. One core idea in special relativity (SR) is that the notion of simultaneity needs to be redefined because it takes some time for light from an event at a distant place to reach us, and we become aware of the event. The concept of “Now” doesn’t make much sense, as we saw, when we speak of an event happening in the sun, for instance. Simultaneity is relative.

Einstein defined simultaneity using the instants in time we detect the event. Detection, as he defined it, involves a round-trip travel of light similar to Radar detection. We send out light, and look at the reflection. If the reflected light from two events reaches us at the same instant, they are simultaneous.
Another way of defining simultaneity is using sensing — we can call two events simultaneous if the light from them reaches us at the same instant. In other words, we can use the light generated by the objects under observation rather than sending light to them and looking at the reflection.

This difference may sound like a hair-splitting technicality, but it does make an enormous difference in the predictions we can make. Einstein’s choice results in a mathematical picture that has many desirable properties, thereby making further development elegant.

The other possibility has an advantage when it comes to describing objects in motion because it corresponds better with how we measure them. We don’t use Radar to see the stars in motion; we merely sense the light (or other radiation) coming from them. But this choice of using a sensory paradigm, rather than Radar-like detection, to describe the universe results in a slightly uglier mathematical picture.

The mathematical difference spawns different philosophical stances, which in turn percolate to the understanding of our physical picture of reality. As an illustration, let us look at an example from astrophysics. Suppose we observe (through a radio telescope, for instance) two objects in the sky, roughly of the same shape and properties. The only thing we know for sure is that the radio waves from two different points in the sky reach the radio telescope at the same instant in time. We can guess that the waves started their journey quite a while ago.

For symmetric objects, if we assume (as we routinely do) that the waves started the journey roughly at the same instant in time, we end up with a picture of two “real” symmetric lobes more or less the way see them.

But there is different possibility that the waves originated from the same object (which is in motion) at two different instants in time, reaching the telescope at the same instant. This possibility explains some spectral and temporal properties of such symmetric radio sources, which is what I mathematically described in a recent physics article. Now, which of these two pictures should we take as real? Two symmetric objects as we see them or one object moving in such a way as to give us that impression? Does it really matter which one is “real”? Does “real” mean anything in this context?

The philosophical stance in implied in special relativity answers this question unequivocally. There is an unambiguous physical reality from which we get the two symmetric radio sources, although it takes a bit of mathematical work to get to it. The mathematics rules out the possibility of a single object moving in such a fashion as to mimic two objects. Essentially, what we see is what is out there.

On the other hand, if we define simultaneity using concurrent arrival of light, we will be forced to admit the exact opposite. What we see is pretty far from what is out there. We will confess that we cannot unambiguously decouple the distortions due to the constraints in perception (the finite speed of light being the constraint of interest here) from what we see. There are multiple physical realities that can result in the same perceptual picture. The only philosophical stance that makes sense is the one that disconnects the sensed reality and the causes behind what is being sensed.

This disconnect is not uncommon in philosophical schools of thought. Phenomenalism, for instance, holds the view that space and time are not objective realities. They are merely the medium of our perception. All the phenomena that happen in space and time are merely bundles of our perception. In other words, space and time are cognitive constructs arising from perception. Thus, all the physical properties that we ascribe to space and time can only apply to the phenomenal reality (the reality as we sense it). The noumenal reality (which holds the physical causes of our perception), by contrast, remains beyond our cognitive reach.

The ramifications of the two different philosophical stances described above are tremendous. Since modern physics seems to embrace a non-phenomenalistic view of space and time, it finds itself at odds with that branch of philosophy. This chasm between philosophy and physics has grown to such a degree that the Nobel prize winning physicist, Steven Weinberg, wondered (in his book “Dreams of a Final Theory”) why the contribution from philosophy to physics have been so surprisingly small. It also prompts philosophers to make statements like, “Whether ‘noumenal reality causes phenomenal reality’ or whether ‘noumenal reality is independent of our sensing it’ or whether ‘we sense noumenal reality,’ the problem remains that the concept of noumenal reality is a totally redundant concept for the analysis of science.”

One, almost accidental, difficulty in redefining the effects of the finite speed of light as the properties of space and time is that any effect that we do understand gets instantly relegated to the realm of optical illusions. For instance, the eight-minute delay in seeing the sun, because we readily understand it and disassociate from our perception using simple arithmetic, is considered a mere optical illusion. However, the distortions in our perception of fast moving objects, although originating from the same source are considered a property of space and time because they are more complex.

We have to come to terms with the fact that when it comes to seeing the universe, there is no such thing as an optical illusion, which is probably what Goethe pointed out when he said, “Optical illusion is optical truth.”

The distinction (or lack thereof) between optical illusion and truth is one of the oldest debates in philosophy. After all, it is about the distinction between knowledge and reality. Knowledge is considered our view about something that, in reality, is “actually the case.” In other words, knowledge is a reflection, or a mental image of something external, as shown in the figure below.
Commonsense view of reality
In this picture, the black arrow represents the process of creating knowledge, which includes perception, cognitive activities, and the exercise of pure reason. This is the picture that physics has come to accept.
Alternate view of reality
While acknowledging that our perception may be imperfect, physics assumes that we can get closer and closer to the external reality through increasingly finer experimentation, and, more importantly, through better theorization. The Special and General Theories of Relativity are examples of brilliant applications of this view of reality where simple physical principles are relentlessly pursued using formidable machine of pure reason to their logically inevitable conclusions.

But there is another, alternative view of knowledge and reality that has been around for a long time. This is the view that regards perceived reality as an internal cognitive representation of our sensory inputs, as illustrated below.

In this view, knowledge and perceived reality are both internal cognitive constructs, although we have come to think of them as separate. What is external is not the reality as we perceive it, but an unknowable entity giving rise to the physical causes behind sensory inputs. In the illustration, the first arrow represents the process of sensing, and the second arrow represents the cognitive and logical reasoning steps. In order to apply this view of reality and knowledge, we have to guess the nature of the absolute reality, unknowable as it is. One possible candidate for the absolute reality is Newtonian mechanics, which gives a reasonable prediction for our perceived reality.

To summarize, when we try to handle the distortions due to perception, we have two options, or two possible philosophical stances. One is to accept the distortions as part of our space and time, as SR does. The other option is to assume that there is a “higher” reality distinct from our sensed reality, whose properties we can only conjecture. In other words, one option is to live with the distortion, while the other is to propose educated guesses for the higher reality. Neither of these options is particularly attractive. But the guessing path is similar to the view accepted in phenomenalism. It also leads naturally to how reality is viewed in cognitive neuroscience, which studies the biological mechanisms behind cognition.

In my view, the two options are not inherently distinct. The philosophical stance of SR can be thought of as coming from a deep understanding that space is merely a phenomenal construct. If the sense modality introduces distortions in the phenomenal picture, we may argue that one sensible way of handling it is to redefine the properties of the phenomenal reality.

Role of Light in Our Reality

From the perspective of cognitive neuroscience, everything we see, sense, feel and think is the result of the neuronal interconnections in our brain and the tiny electrical signals in them. This view must be right. What else is there? All our thoughts and worries, knowledge and beliefs, ego and reality, life and death — everything is merely neuronal firings in the one and half kilograms of gooey, grey material that we call our brain. There is nothing else. Nothing!

In fact, this view of reality in neuroscience is an exact echo of phenomenalism, which considers everything a bundle of perception or mental constructs. Space and time are also cognitive constructs in our brain, like everything else. They are mental pictures our brains concoct out of the sensory inputs that our senses receive. Generated from our sensory perception and fabricated by our cognitive process, the space-time continuum is the arena of physics. Of all our senses, sight is by far the dominant one. The sensory input to sight is light. In a space created by the brain out of the light falling on our retinas (or on the photo sensors of the Hubble telescope), is it a surprise that nothing can travel faster than light?

This philosophical stance is the basis of my book, The Unreal Universe, which explores the common threads binding physics and philosophy. Such philosophical musings usually get a bad rap from us physicists. To physicists, philosophy is an entirely different field, another silo of knowledge. We need to change this belief and appreciate the overlap among different knowledge silos. It is in this overlap that we can expect to find breakthroughs in human thought.

This philosophical grand-standing may sound presumptuous and the veiled self-admonition of physicists understandably unwelcome; but I am holding a trump card. Based on this philosophical stance, I have come up with a radically new model for two astrophysical phenomena, and published it in an article titled, “Are Radio Sources and Gamma Ray Bursts Luminal Booms?” in the well-known International Journal of Modern Physics D in June 2007. This article, which soon became one of the top accessed articles of the journal by Jan 2008, is a direct application of the view that the finite speed of light distorts the way we perceive motion. Because of these distortions, the way we see things is a far cry from the way they are.

We may be tempted to think that we can escape such perceptual constraints by using technological extensions to our senses such as radio telescopes, electron microscopes or spectroscopic speed measurements. After all, these instruments do not have “perception” per se and should be immune to the human weaknesses we suffer from. But these soulless instruments also measure our universe using information carriers limited to the speed of light. We, therefore, cannot escape the basic constraints of our perception even when we use modern instruments. In other words, the Hubble telescope may see a billion light years farther than our naked eyes, but what it sees is still a billion years older than what our eyes see.

Our reality, whether technologically enhanced or built upon direct sensory inputs, is the end result of our perceptual process. To the extent that our long range perception is based on light (and is therefore limited to its speed), we get only a distorted picture of the universe.

Light in Philosophy and Spirituality

The twist to this story of light and reality is that we seem to have known all this for a long time. Classical philosophical schools seem to have thought along lines very similar to Einstein’s thought experiment.

Once we appreciate the special place accorded to light in modern science, we have to ask ourselves how different our universe would have been in the absence of light. Of course, light is only a label we attach to a sensory experience. Therefore, to be more accurate, we have to ask a different question: if we did not have any senses that responded to what we call light, would that affect the form of the universe?

The immediate answer from any normal (that is, non-philosophical) person is that it is obvious. If everybody is blind, everybody is blind. But the existence of the universe is independent of whether we can see it or not. Is it though? What does it mean to say the universe exists if we cannot sense it? Ah… the age-old conundrum of the falling tree in a deserted forest. Remember, the universe is a cognitive construct or a mental representation of the light input to our eyes. It is not “out there,” but in the neurons of our brain, as everything else is. In the absence of light in our eyes, there is no input to be represented, ergo no universe.

If we had sensed the universe using modalities that operated at other speeds (echolocation, for instance), it is those speeds that would have figured in the fundamental properties of space and time. This is the inescapable conclusion from phenomenalism.

The role of light in creating our reality or universe is at the heart of Western religious thinking. A universe devoid of light is not simply a world where you have switched off the lights. It is indeed a universe devoid of itself, a universe that doesn’t exist. It is in this context that we have to understand the wisdom behind the statement that “the earth was without form, and void” until God caused light to be, by saying “Let there be light.”

The Quran also says, “Allah is the light of the heavens and the earth,” which is mirrored in one of the ancient Hindu writings: “Lead me from darkness to light, lead me from the unreal to the real.” The role of light in taking us from the unreal void (the nothingness) to a reality was indeed understood for a long, long time. Is it possible that the ancient saints and prophets knew things that we are only now beginning to uncover with all our supposed advances in knowledge?

I know I may be rushing in where angels fear to tread, for reinterpreting the scriptures is a dangerous game. Such foreign interpretations are seldom welcome in the theological circles. But I seek refuge in the fact that I am looking for concurrence in the metaphysical views of spiritual philosophies, without diminishing their mystical or theological value.

The parallels between the noumenal-phenomenal distinction in phenomenalism and the Brahman-Maya distinction in Advaita are hard to ignore. This time-tested wisdom on the nature of reality from the repertoire of spirituality is now reinvented in modern neuroscience, which treats reality as a cognitive representation created by the brain. The brain uses the sensory inputs, memory, consciousness, and even language as ingredients in concocting our sense of reality. This view of reality, however, is something physics is yet to come to terms with. But to the extent that its arena (space and time) is a part of reality, physics is not immune to philosophy.

As we push the boundaries of our knowledge further and further, we are beginning to discover hitherto unsuspected and often surprising interconnections between different branches of human efforts. In the final analysis, how can the diverse domains of our knowledge be independent of each other when all our knowledge resides in our brain? Knowledge is a cognitive representation of our experiences. But then, so is reality; it is a cognitive representation of our sensory inputs. It is a fallacy to think that knowledge is our internal representation of an external reality, and therefore distinct from it. Knowledge and reality are both internal cognitive constructs, although we have come to think of them as separate.

Recognizing and making use of the interconnections among the different domains of human endeavour may be the catalyst for the next breakthrough in our collective wisdom that we have been waiting for.

The Philosophy of Special Relativity — A Comparison between Indian and Western Interpretations

Abstract: The Western philosophical phenomenalism could be treated as a kind of philosophical basis of the special theory of relativity. The perceptual limitations of our senses hold the key to the understanding of relativistic postulates. The specialness of the speed of light in our phenomenal space and time is more a matter of our perceptual apparatus, than an input postulate to the special theory of relativity. The author believes that the parallels among the phenomenological, Western spiritual and the Eastern Advaita interpretations of special relativity point to an exciting possibility of unifying the Eastern and Western schools of thought to some extent.

– Editor

Key Words: Relativity, Speed of Light, Phenomenalism, Advaita.

Introduction

The philosophical basis of the special theory of relativity can be interpreted in terms of Western phenomenalism, which views space and time are considered perceptual and cognitive constructs created out our sensory inputs. From this perspective, the special status of light and its speed can be understood through a phenomenological study of our senses and the perceptual limitations to our phenomenal notions of space and time. A similar view is echoed in the Brahman-Maya distinction in Advaita. If we think of space and time as part of Maya, we can partly understand the importance that the speed of light in our reality, as enshrined in special relativity. The central role of light in our reality is highlighted in the Bible as well. These remarkable parallels among the phenomenological, Western spiritual and the Advaita interpretations of special relativity point to an exciting possibility of unifying the Eastern and Western schools of thought to a certain degree.

Special Relativity

Einstein unveiled his special theory of relativity2 a little over a century ago. In his theory, he showed that space and time were not absolute entities. They are entities relative to an observer. An observer’s space and time are related to those of another through the speed of light. For instance, nothing can travel faster than the speed of light. In a moving system, time flows slower and space contracts in accordance with equations involving the speed of light. Light, therefore, enjoys a special status in our space and time. This specialness of light in our reality is indelibly enshrined in the special theory of relativity.

Where does this specialness come from? What is so special about light that its speed should figure in the basic structure of space and time and our reality? This question has remained unanswered for over 100 years. It also brings in the metaphysical aspects of space and time, which form the basis of what we perceive as reality.

Noumenal-Phenomenal and Brahman-Maya Distinctions

In the Advaita3 view of reality, what we perceive is merely an illusion-Maya. Advaita explicitly renounces the notion that the perceived reality is external or indeed real. It teaches us that the phenomenal universe, our conscious awareness of it, and our bodily being are all an illusion or Maya. They are not the true, absolute reality. The absolute reality existing in itself, independent of us and our experiences, is Brahman.

A similar view of reality is echoed in phenomenalism,4 which holds that space and time are not objective realities. They are merely the medium of our perception. In this view, all the phenomena that happen in space and time are merely bundles of our perception. Space and time are also cognitive constructs arising from perception. Thus, the reasons behind all the physical properties that we ascribe to space and time have to be sought in the sensory processes that create our perception, whether we approach the issue from the Advaita or phenomenalism perspective.

This analysis of the importance of light in our reality naturally brings in the metaphysical aspects of space and time. In Kant’s view,5 space and time are pure forms of intuition. They do not arise from our experience because our experiences presuppose the existence of space and time. Thus, we can represent space and time in the absence of objects, but we cannot represent objects in the absence of space and time.

Kant’s middle-ground has the advantage of reconciling the views of Newton and Leibniz. It can agree with Newton’s view6 that space is absolute and real for phenomenal objects open to scientific investigation. It can also sit well with Leibniz’s view7 that space is not absolute and has an existence only in relation to objects, by highlighting their relational nature, not among objects in themselves (noumenal objects), but between observers and objects.

We can roughly equate the noumenal objects to forms in Brahman and our perception of them to Maya. In this article, we will use the terms “noumenal reality,” “absolute reality,” or “physical reality” interchangeably to describe the collection of noumenal objects, their properties and interactions, which are thought to be the underlying causes of our perception. Similarly, we will “phenomenal reality,” “perceived or sensed reality,” and “perceptual reality” to signify our reality as we perceive it.

As with Brahman causing Maya, we assume that the phenomenal notions of space and time arise from noumenal causes8 through our sensory and cognitive processes. Note that this causality assumption is ad-hoc; there is no a priori reason for phenomenal reality to have a cause, nor is causation a necessary feature of the noumenal reality. Despite this difficulty, we proceed from a naive model for the noumenal reality and show that, through the process of perception, we can “derive” a phenomenal reality that obeys the special theory of relativity.

This attempt to go from the phenomena (space and time) to the essence of what we experience (a model for noumenal reality) is roughly in line with Husserl’s transcendental phenomenology.9 The deviation is that we are more interested in the manifestations of the model in the phenomenal reality itself rather than the validity of the model for the essence. Through this study, we show that the specialness of the speed of light in our phenomenal space and time is a consequence of our perceptual apparatus. It doesn’t have to be an input postulate to the special theory of relativity.

Perception and Phenomenal Reality

The properties we ascribe to space and time (such as the specialness of the speed of light) can only be a part of our perceived reality or Maya, in Advaita, not of the underlying absolute reality, Brahman. If we think of space and time as aspects of our perceived reality arising from an unknowable Brahman through our sensory and cognitive processes, we can find an explanation for the special distinction of the speed of light in the process and mechanism of our sensing. Our thesis is that the reason for the specialness of light in our phenomenal notions of space and time is hidden in the process of our perception.

We, therefore, study how the noumenal objects around us generate our sensory signals, and how we construct our phenomenal reality out of these signals in our brains. The first part is already troublesome because noumenal objects, by definition, have no properties or interactions that we can study or understand.

These features of the noumenal reality are identical to the notion of Brahman in Advaita, which highlights that the ultimate truth is Brahman, the one beyond time, space and causation. Brahman is the material cause of the universe, but it transcends the cosmos. It transcends time; it exists in the past, present and future. It transcends space; it has no beginning, middle and end. It even transcends causality. For that reason, Brahman is incomprehensible to the human mind. The way it manifests to us is through our sensory and cognitive processes. This manifestation is Maya, the illusion, which, in the phenomenalistic parlance, corresponds to the phenomenal reality.

For our purpose in this article, we describe our sensory and cognitive process and the creation of the phenomenal reality or Maya10 as follows. It starts with the noumenal objects (or forms in Brahman), which generate the inputs to our senses. Our senses then process the signals and relay the processed electric data corresponding to them to our brain. The brain creates a cognitive model, a representation of the sensory inputs, and presents it to our conscious awareness as reality, which is our phenomenal world or Maya.

This description of how the phenomenal reality created ushers in a tricky philosophical question. Who or what creates the phenomenal reality and where? It is not created by our senses, brain and mind because these are all objects or forms in the phenomenal reality. The phenomenal reality cannot create itself. It cannot be that the noumenal reality creates the phenomenal reality because, in that case, it would be inaccurate to assert the cognitive inaccessibility to the noumenal world.

This philosophical trouble is identical in Advaita as well. Our senses, brain and mind cannot create Maya, because they are all part of Maya. If Brahman created Maya, it would have to be just as real. This philosophical quandary can be circumvented in the following way. We assume that all events and objects in Maya have a cause or form in Brahman or in the noumenal world. Thus, we postulate that our senses, mind and body all have some (unknown) forms in Brahman (or in the noumenal world), and these forms create Maya in our conscious awareness, ignoring the fact that our consciousness itself is an illusory manifestation in the phenomenal world. This inconsistency is not material to our exploration into the nature of space and time because we are seeking the reason for the specialness of light in the sensory process rather than at the level of consciousness.

Space and time together form what physics considers the basis of reality. Space makes up our visual reality precisely as sounds make up our auditory world. Just as sounds are a perceptual experience rather than a fundamental property of physical reality, space also is an experience, or a cognitive representation of the visual inputs, not a fundamental aspect of Brahman or the noumenal reality. The phenomenal reality thus created is Maya. The Maya events are an imperfect or distorted representation of the corresponding Brahman events. Since Brahman is a superset of Maya (or, equivalently, our senses are potentially incapable of sensing all aspects of the noumenal reality), not all objects and events in Brahman create a projection in Maya. Our perception (or Maya) is thus limited because of the sense modality and its speed, which form the focus of our investigation in this article.

In summary, it can be argued that the noumenal-phenomenal distinction in phenomenalism is an exact parallel to the Brahman-Maya distinction in Advaita if we think of our perceived reality (or Maya) as arising from sensory and cognitive processes.

Sensing Space and Time, and the Role of Light

The phenomenal notions of space and time together form what physics considers the basis of reality. Since we take the position that space and time are the end results of our sensory perception, we can understand some of the limitations in our Maya by studying the limitations in our senses themselves.

At a fundamental level, how do our senses work? Our sense of sight operates using light, and the fundamental interaction involved in sight falls in the electromagnetic (EM) category because light (or photon) is the intermediary of EM interactions.11

The exclusivity of EM interaction is not limited to our long-range sense of sight; all the short-range senses (touch, taste, smell and hearing) are also EM in nature. In physics, the fundamental interactions are modeled as fields with gauge bosons.12 In quantum electrodynamics13 (the quantum field theory of EM interactions), photon (or light) is the gauge boson mediating EM interactions. Electromagnetic interactions are responsible for all our sensory inputs. To understand the limitations of our perception of space, we need not highlight the EM nature of all our senses. Space is, by and large, the result of our sight sense. But it is worthwhile to keep in mind that we would have no sensing, and indeed no reality, in the absence of EM interactions.

Like our senses, all our technological extensions to our senses (such as radio telescopes, electron microscopes, red shift measurements and even gravitational lensing) use EM interactions exclusively to measure our universe. Thus, we cannot escape the basic constraints of our perception even when we use modern instruments. The Hubble telescope may see a billion light years farther than our naked eyes, but what it sees is still a billion years older than what our eyes see. Our phenomenal reality, whether built upon direct sensory inputs or technologically enhanced, is made up of a subset of EM particles and interactions only. What we perceive as reality is a subset of forms and events in the noumenal world corresponding to EM interactions, filtered through our sensory and cognitive processes. In the Advaita parlance, Maya can be thought of as a projection of Brahman through EM interactions into our sensory and cognitive space, quite probably an imperfect projection.

The exclusivity of EM interactions in our perceived reality is not always appreciated, mainly because of a misconception that we can sense gravity directly. This confusion arises because our bodies are subject to gravity. There is a fine distinction between “being subject to” and “being able to sense” gravitational force. The gravity sensing in our ears measures the effect of gravity on EM matter. In the absence of EM interaction, it is impossible to sense gravity, or anything else for that matter.

This assertion that there is no sensing in the absence of EM interactions brings us to the next philosophical hurdle. One can always argue that, in the absence of EM interaction, there is no matter to sense. This argument is tantamount to insisting that the noumenal world consists of only those forms and events that give rise to EM interaction in our phenomenal perception. In other words, it is the same as insisting that Brahman is made up of only EM interactions. What is lacking in the absence of EM interaction is only our phenomenal reality. In the Advaita notion, in the absence of sensing, Maya does not exist. The absolute reality or Brahman, however, is independent of our sensing it. Again, we see that the Eastern and Western views on reality we explored in this article are remarkably similar.

The Speed of Light

Knowing that our space-time is a representation of the light waves our eyes receive, we can immediately see that light is indeed special in our reality. In our view, sensory perception leads to our brain’s representation that we call reality, or Maya. Any limitation in this chain of sensing leads to a corresponding limitation in our phenomenal reality.

One limitation in the chain from senses to perception is the finite speed of photon, which is the gauge boson of our senses. The finite speed of the sense modality influences and distorts our perception of motion, space and time. Because these distortions are perceived as a part of our reality itself, the root cause of the distortion becomes a fundamental property of our reality. This is how the speed of light becomes such an important constant in our space-time.

The importance of the speed of light, however, is respected only in our phenomenal Maya. Other modes of perception have other speeds the figure as the fundamental constant in their space-like perception. The reality sensed through echolocation, for instance, has the speed of sound as a fundamental property. In fact, it is fairly simple to establish14 that echolocation results in a perception of motion that obeys something very similar to special relativity with the speed of light replaced with that of sound.

Theories beyond Sensory Limits

The basis of physics is the world view called scientific realism, which is not only at the core of sciences but is our natural way of looking at the world as well. Scientific realism, and hence physics, assume an independently existing external world, whose structures are knowable through scientific investigations. To the extent observations are based on perception, the philosophical stance of scientific realism, as it is practiced today, can be thought of as a trust in our perceived reality, and as an assumption that it is this reality that needs to be explored in science.

Physics extends its reach beyond perception or Maya through the rational element of pure theory. Most of physics works in this “extended” intellectual reality, with concepts such as fields, forces, light rays, atoms, particles, etc., the existence of which is insisted upon through the metaphysical commitment implied in scientific realism. However, it does not claim that the rational extensions are the noumenal causes or Brahman giving raise to our phenomenal perception.

Scientific realism has helped physics tremendously, with all its classical theories. However, scientific realism and the trust in our perception of reality should apply only within the useful ranges of our senses. Within the ranges of our sensory perceptions, we have fairly intuitive physics. An example of an intuitive picture is Newtonian mechanics that describe “normal” objects moving around at “normal” speeds.

When we get closer to the edges of our sensory modalities, we have to modify our sciences to describe the reality as we sense it. These modifications lead to different, and possibly incompatible, theories. When we ascribe the natural limitations of our senses and the consequent limitations of our perception (and therefore observations) to the fundamental nature of reality itself, we end up introducing complications in our physical laws. Depending on which limitations we are incorporating into the theory (e.g., small size, large speeds etc.), we may end up with theories that are incompatible with each other.

Our argument is that some of these complications (and, hopefully, incompatibilities) can be avoided if we address the sensory limitations directly. For instance, we can study the consequence of the fact that our senses operate at the speed of light as follows. We can model Brahman (the noumenal reality) as obeying classical mechanics, and work out what kind of Maya (phenomenal reality) we will experience through the chain of sensing.

The modeling of the noumenal world (as obeying classical mechanics), of course, has shaky philosophical foundations. But the phenomenal reality predicted from this model is remarkably close to the reality we do perceive. Starting from this simple model, it can be easily shown our perception of motion at high speeds obeys special relativity.

The effects due to the finite speed of light are well known in physics. We know, for instance, that what we see happening in distant stars and galaxies now actually took place quite awhile ago. A more “advanced” effect due to the light travel time15 is the way we perceive motion at high speeds, which is the basis of special relativity. In fact, many astrophysical phenomena can be understood16 in terms of light travel time effects. Because our sense modality is based on light, our sensed picture of motion has the speed of light appearing naturally in the equations describing it. So the importance of the speed of light in our space-time (as described in special relativity) is due to the fact that our reality is Maya created based on light inputs.

Conclusion

Almost all branches of philosophy grapple with this distinction between the phenomenal and the absolute realities to some extent. Advaita Vedanta holds the unrealness of the phenomenal reality as the basis of their world view. In this article, we showed that the views in phenomenalism can be thought of as a restatement of the Advaita postulates.

When such a spiritual or philosophical insight makes its way into science, great advances in our understanding can be expected. This convergence of philosophy (or even spirituality) and science is beginning to take place, most notably in neuroscience, which views reality as a creation of our brain, echoing the notion of Maya.

Science gives a false impression that we can get arbitrarily close to the underlying physical causes through the process of scientific investigation and rational theorization. An example of such theorization can be found in our sensation of hearing. The experience or the sensation of sound is an incredibly distant representation of the physical cause–namely air pressure waves. We are aware of the physical cause because we have a more powerful sight sense. So it would seem that we can indeed go from Maya (sound) to the underlying causes (air pressure waves).

However, it is a fallacy to assume that the physical cause (the air pressure waves) is Brahman. Air pressure waves are still a part of our perception; they are part of the intellectual picture we have come to accept. This intellectual picture is an extension of our visual reality, based on our trust in the visual reality. It is still a part of Maya.

The new extension of reality proposed in this article, again an intellectual extension, is an educated guess. We guess a model for the absolute reality, or Brahman, and predict what the consequent perceived reality should be, working forward through the chain of sensing and creating Maya. If the predicted perception is a good match with the Maya we do experience, then the guesswork for Brahman is taken to be a fairly accurate working model. The consistency between the predicted perception and what we do perceive is the only validation of the model for the nature of the absolute reality. Furthermore, the guess is only one plausible model for the absolute reality; there may be different such “solutions” to the absolute reality all of which end up giving us our perceived reality.

It is a mistake to think of the qualities of our subjective experience of sound as the properties of the underlying physical process. In an exact parallel, it is a fallacy to assume that the subjective experience of space and time is the fundamental property of the world we live in. The space-time continuum, as we see it or feel it, is only a partial and incomplete representation of the unknowable Brahman. If we are willing to model the unknowable Brahman as obeying classical mechanics, we can indeed derive the properties of our perceived reality (such as time dilation, length contraction, light speed ceiling and so on in special relativity). By proposing this model for the noumenal world, we are not suggesting that all the effects of special relativity are mere perceptual artifacts. We are merely reiterating a known fact that space and time themselves cannot be anything but perceptual constructs. Thus their properties are manifestations of the process of perception.

When we consider processes close to or beyond our sensor limits, the manifestations of our perceptual and cognitive constraints become significant. Therefore, when it comes to the physics that describes such processes, we really have to take into account the role that our perception and cognition play in sensing them. The universe as we see it is only a cognitive model created out of the photons falling on our retina or on the photosensors of the Hubble telescope. Because of the finite speed of the information carrier (namely light), our perception is distorted in such a way as to give us the impression that space and time obey special relativity. They do, but space and time are only a part of our perception of an unknowable reality—a perception limited by the speed of light.

The central role of light in creating our reality or universe is at the heart of western spiritual philosophy as well. A universe devoid of light is not simply a world where you have switched off the lights. It is indeed a universe devoid of itself, a universe that doesn’t exist. It is in this context that we have to understand the wisdom behind the notion that “the earth was without form, and void’” until God caused light to be, by saying “Let there be light.” Quran also says, “Allah is the light of the heavens.” The role of light in taking us from the void (the nothingness) to a reality was understood for a long, long time. Is it possible that the ancient saints and prophets knew things that we are only now beginning to uncover with all our advances in knowledge? Whether we use old Eastern Advaita views or their Western counterparts, we can interpret the philosophical stance behind special relativity as hidden in the distinction between our phenomenal reality and its unknowable physical causes.

References

  1. Dr. Manoj Thulasidas graduated from the Indian Institute of Technology (IIT), Madras, in 1987. He studied fundamental particles and interactions at the CLEO collaboration at Cornell University during 1990-1992. After receiving his PhD in 1993, he moved to Marseilles, France and continued his research with the ALEPH collaboration at CERN, Geneva. During his ten-year career as a research scientist in the field of High energy physics, he co-authored over 200 publications.
  2. Einstein, A. (1905). Zur Elektrodynamik bewegter Körper. (On The Electrodynamics Of Moving Bodies). Annalen der Physik, 17, 891-921.
  3. Radhakrishnan, S. & Moore, C. A. (1957). Source Book in Indian Philosophy. Princeton University Press, Princeton, NY.
  4. Chisolm, R. (1948). The Problem of Empiricism. The Journal of Philosophy, 45, 512-517.
  5. Allison, H. (2004). Kant’s Transcendental Idealism. Yale University Press.
  6. Rynasiewicz, R. (1995). By Their Properties, Causes and Effects: Newton’s Scholium on Time, Space, Place and Motion. Studies in History and Philosophy of Science, 26, 133-153, 295-321.
  7. Calkins, M. W. (1897). Kant’s Conception of the Leibniz Space and Time Doctrine. The Philosophical Review, 6 (4), 356-369.
  8. Janaway, C., ed. (1999). The Cambridge Companion to Schopenhauer. Cambridge University Press.
  9. Schmitt, R. (1959). Husserl’s Transcendental-Phenomenological Reduction. Philosophy and Phenomenological Research, 20 (2), 238-245.
  10. Thulasidas, M. (2007). The Unreal Universe. Asian Books, Singapore.
  11. Electromagnetic (EM) interaction is one of the four kinds of interactions in the Standard Model (Griffths, 1987) of particle physics. It is the interaction between charged bodies. Despite the EM repulsion between them, however, the protons stay confined within the nucleus because of the strong interaction, whose magnitude is much bigger than that of EM interactions. The other two interactions are termed the weak interaction and the gravitational interaction.
  12. In quantum field theory, every fundamental interaction consists of emitting a particle and absorbing it in an instant. These so-called virtual particles emitted and absorbed are known as the gauge bosons that mediate the interactions.
  13. Feynman, R. (1985). Quantum Electrodynamics. Addison Wesley.
  14. Thulasidas, M. (2007). The Unreal Universe. Asian Books, Singapore.
  15. Rees, M. (1966). Appearance of Relativistically Expanding Radio Sources. Nature, 211, 468-470.
  16. Thulasidas, M. (2007a). Are Radio Sources and Gamma Ray Bursts Luminal Booms? International Journal of Modern Physics D, 16 (6), 983-1000.

1984

All great books have one thing in common. They present deep philosophical inquiries, often clad in superb story lines. Or is it just my proclivity to see philosophy where none exists?

In 1984, the immediate story is of a completely totalitarian regime. Inwardly, 1984 is also about ethics and politics. It doesn’t end there, but goes into nested philosophical inquiries about how everything is eventually connected to metaphysics. It naturally ends up in solipsism, not merely in the material, metaphysical sense, but also in a spiritual, socio-psychological sense where the only hope, the only desired outcome of life, becomes death.

I think I may be giving away too much of my impressions in the first paragraph. Let’s take it step by step. We all know that totalitarianism is bad. It is a bad political system, we believe. The badness of totalitarianism can present itself at different levels of our social existence.

At the lowest level, it can be a control over our physical movements, physical freedom, and restrictions on what you can or cannot do. Try voting against a certain African “president” and you get beaten up, for instance. Try leaving certain countries, you get shot.

At a higher level, totalitarianism can be about financial freedom. Think of those in the developed world who have to juggle three jobs just to put food on the table. At a progressively subtler level, totalitarianism is about control of information. Example: media conglomerates filtering and coloring all the news and information we receive.

At the highest level, totalitarianism is a fight for your mind, your soul, and your spiritual existence. 1984 presents a dystopia where totalitarianism is complete, irrevocable, and existing at all levels from physical to spiritual.

Another book of the same dystopian kind is The Handmaid’s Tale, where a feminist’s nightmare of a world is portrayed. Here, the focus is on religious extremism, and the social and sexual subjugation brought about by it. But the portrayal of the world gone hopelessly totalitarian is similar to 1984.

Also portraying a dark dystopia is V for Vendentta, with torture and terrorism thrown in. This work is probably inspired by 1984, I have to look it up.

It is the philosophical points in 1984 that make it the classic it is. The past, for instance, is a matter of convention. If everybody believes (or is forced to believe) that events took place in a certain way, then that is the past. History is written by the victors. Knowing that, how can you trust the greatness of the victors or the evil in the vanquished? Assume for a second that Hitler had actually won the Second World War. Do you think we would’ve still thought of him as evil? I think we would probably think of him as the father of the modern world or something. Of course, we would be having this conversation (if we were allowed to exist and have conversations at all) in German.

Even at a personal level, the past is not as immutable as it seems. Truth is relative. Lies repeated often enough become truth. All these points are describe well in 1984, first from Winston’s point of view and later, in the philosophically sophisticated discourses of O’Brien. In a world existing in our own brain, where the phenomenal reality as we see it is far from the physical one, morality does lose a bit of its glamor. Metaphysics can erode on ethics. Solipsism can annihilate it.

A review, especially one in a blog, doesn’t have to be conventional. So let me boldly outline my criticisms of 1984 as well. I believe that the greatest fear of a normal human being is the fear of death. After all, the purpose of life is merely to live a little longer. Everything that our biological faculties do stem from the desire to exist a little longer.

Based on this belief of mine, I find certain events in 1984 a bit incongruous. Why is it that Winston and Julia don’t fear death, but still fear the telescreens and gestapo-like police? Perhaps the fear of pain overrides the fear of death. What do I know, I have never been tortured.

But even the fear of pain can be understood in terms of the ultimate fear. Pain is a messenger of bodily harm, ergo of possible death. But fear of rats?! Perhaps irrational phobias, existing at a sub-cognitive, almost physical, layer may be stronger than everything else. But I cannot help feeling that there is something amiss, something contrived, in the incarceration and torture parts of 1984.

May be Orwell didn’t know how to portray spiritual persecution. Luckily, none of us knows. So such techniques as rats and betrayal were employed to bring about the hideousness of the process. This part of the book leaves me a bit dissatisfied. After all, our protagonists knew full well what they were getting into, and what the final outcome would be. If they knew their spirit would be broken, then why leave it out there to be broken?