Tag Αρχεία: light travel time

Light Travel Time Effects and Cosmological Features

This unpublished article is a sequel to my earlier paper (also posted here as “Είναι Radio Πηγές και Gamma Ray Εκρήξεις Luminal Ομολογίες?“). Αυτό το blog έκδοση περιέχει την περίληψη, εισαγωγή και τα συμπεράσματα. Το πλήρες κείμενο του άρθρου είναι διαθέσιμο σε μορφή αρχείου PDF.

.

Περίληψη

Light travel time effects (LTT) are an optical manifestation of the finite speed of light. They can also be considered perceptual constraints to the cognitive picture of space and time. Based on this interpretation of LTT effects, we recently presented a new hypothetical model for the temporal and spatial variation of the spectrum of Gamma Ray Bursts (GRB) and radio sources. Σε αυτό το άρθρο, we take the analysis further and show that LTT effects can provide a good framework to describe such cosmological features as the redshift observation of an expanding universe, and the cosmic microwave background radiation. The unification of these seemingly distinct phenomena at vastly different length and time scales, along with its conceptual simplicity, can be regarded as indicators of the curious usefulness of this framework, if not its validity.

Εισαγωγή

The finite speed of light plays an important part in how we perceive distance and speed. This fact should hardly come as a surprise because we do know that things are not as we see them. The sun that we see, για παράδειγμα, is already eight minutes old by the time we see it. This delay is trivial; αν θέλουμε να γνωρίζουμε τι συμβαίνει στο ήλιο τώρα, το μόνο που έχουμε να κάνουμε είναι να περιμένουμε επί οκτώ λεπτά. We, nonetheless, have to “σωστή” for this distortion in our perception due to the finite speed of light before we can trust what we see.

Αυτό που είναι εκπληκτικό (και σπάνια τονίζεται) είναι ότι, όταν πρόκειται για την ανίχνευση κίνησης, δεν μπορούμε να συμφωνήσουμε-υπολογίσει τον ίδιο τρόπο παίρνουμε την καθυστέρηση να δει τον ήλιο. Αν δούμε ένα ουράνιο σώμα που κινείται σε ένα improbably υψηλή ταχύτητα, δεν μπορούμε να καταλάβουμε πόσο γρήγορα και προς ποια κατεύθυνση είναι “πραγματικά” κινείται χωρίς να κάνει περαιτέρω υποθέσεις. One way of handling this difficulty is to ascribe the distortions in our perception of motion to the fundamental properties of the arena of physics — χώρου και του χρόνου. Μια άλλη πορεία δράσης είναι να δεχθεί την αποσύνδεση μεταξύ της αντίληψης μας και το υποκείμενο “πραγματικότητα” και να ασχοληθεί με το θέμα με κάποιο τρόπο.

Exploring the second option, we assume an underlying reality that gives rise to our perceived picture. We further model this underlying reality as obeying classical mechanics, and work out our perceived picture through the apparatus of perception. Με άλλα λόγια, we do not attribute the manifestations of the finite speed of light to the properties of the underlying reality. Αντ 'αυτού, we work out our perceived picture that this model predicts and verify whether the properties we do observe can originate from this perceptual constraint.

Space, the objects in it, and their motion are, και με μεγάλο, the product of optical perception. One tends to take it for granted that perception arises from reality as one perceives it. Σε αυτό το άρθρο, we take the position that what we perceive is an incomplete or distorted picture of an underlying reality. Further, we are trying out classical mechanics for the the underlying reality (for which we use terms like absolute, noumenal or physical reality) that does cause our perception to see if it fits with our perceived picture (which we may refer to as sensed or phenomenal reality).

Note that we are not implying that the manifestations of perception are mere delusions. They are not; they are indeed part of our sensed reality because reality is an end result of perception. This insight may be behind Goethe’s famous statement, “Οπτική ψευδαίσθηση είναι οπτικό αλήθεια.”

We applied this line of thinking to a physics problem recently. We looked at the spectral evolution of a GRB and found it to be remarkably similar to that in a sonic boom. Using this fact, we presented a model for GRB as our perception of a “αυλού” boom, with the understanding that it is our perceived picture of reality that obeys Lorentz invariance and our model for the underlying reality (causing the perceived picture) may violate relativistic physics. The striking agreement between the model and the observed features, Ωστόσο,, extended beyond GRBs to symmetric radio sources, which can also be regarded as perceptual effects of hypothetical luminal booms.

Σε αυτό το άρθρο, we look at other implications of the model. We start with the similarities between the light travel time (LTT) effects and the coordinate transformation in Special Relativity (SR). These similarities are hardly surprising because SR is derived partly based on LTT effects. We then propose an interpretation of SR as a formalization of LTT effects and study a few observed cosmological phenomena in the light of this interpretation.

Similarities between Light Travel Time Effects and SR

Special relativity seeks a linear coordinate transformation between coordinate systems in motion with respect to each other. We can trace the origin of linearity to a hidden assumption on the nature of space and time built into SR, as stated by Einstein: “In the first place it is clear that the equations must be linear on account of the properties of homogeneity which we attribute to space and time.” Because of this assumption of linearity, the original derivation of the transformation equations ignores the asymmetry between approaching and receding objects. Both approaching and receding objects can be described by two coordinate systems that are always receding from each other. Για παράδειγμα, if a system K is moving with respect to another system k along the positive X axis of k, then an object at rest in K at a positive x is receding while another object at a negative x is approaching an observer at the origin of k.

The coordinate transformation in Einstein’s original paper is derived, in part, a manifestation of the light travel time (LTT) effects and the consequence of imposing the constancy of light speed in all inertial frames. This is most obvious in the first thought experiment, where observers moving with a rod find their clocks not synchronized due to the difference in light travel times along the length of the rod. Ωστόσο,, in the current interpretation of SR, the coordinate transformation is considered a basic property of space and time.

One difficulty that arises from this interpretation of SR is that the definition of the relative velocity between the two inertial frames becomes ambiguous. If it is the velocity of the moving frame as measured by the observer, then the observed superluminal motion in radio jets starting from the core region becomes a violation of SR. If it is a velocity that we have to deduce by considering LT effects, then we have to employ the extra ad-hoc assumption that superluminality is forbidden. These difficulties suggest that it may be better to disentangle the light travel time effects from the rest of SR.

In this section, we will consider space and time as a part of the cognitive model created by the brain, and argue that special relativity applies to the cognitive model. The absolute reality (of which the SR-like space-time is our perception) does not have to obey the restrictions of SR. Ιδίως, objects are not restricted to subluminal speeds, but they may appear to us as though they are restricted to subluminal speeds in our perception of space and time. If we disentangle LTT effects from the rest of SR, we can understand a wide array of phenomena, as we shall see in this article.

Unlike SR, considerations based on LTT effects result in intrinsically different set of transformation laws for objects approaching an observer and those receding from him. More generally, the transformation depends on the angle between the velocity of the object and the observer’s line of sight. Since the transformation equations based on LTT effects treat approaching and receding objects asymmetrically, they provide a natural solution to the twin paradox, για παράδειγμα.

Συμπεράσματα

Because space and time are a part of a reality created out of light inputs to our eyes, some of their properties are manifestations of LTT effects, especially on our perception of motion. The absolute, physical reality presumably generating the light inputs does not have to obey the properties we ascribe to our perceived space and time.

We showed that LTT effects are qualitatively identical to those of SR, noting that SR only considers frames of reference receding from each other. This similarity is not surprising because the coordinate transformation in SR is derived based partly on LTT effects, και εν μέρει με την υπόθεση ότι το φως ταξιδεύει με την ίδια ταχύτητα σε σχέση με όλες αδρανειακών. In treating it as a manifestation of LTT, we did not address the primary motivation of SR, which is a covariant formulation of Maxwell’s equations. It may be possible to disentangle the covariance of electrodynamics from the coordinate transformation, although it is not attempted in this article.

Unlike SR, LTT effects are asymmetric. This asymmetry provides a resolution to the twin paradox and an interpretation of the assumed causality violations associated with superluminality. Επί πλέον, the perception of superluminality is modulated by LTT effects, and explains gamma ray bursts and symmetric jets. As we showed in the article, perception of superluminal motion also holds an explanation for cosmological phenomena like the expansion of the universe and cosmic microwave background radiation. LTT effects should be considered as a fundamental constraint in our perception, and consequently in physics, rather than as a convenient explanation for isolated phenomena.

Given that our perception is filtered through LTT effects, we have to deconvolute them from our perceived reality in order to understand the nature of the absolute, physical reality. This deconvolution, Ωστόσο,, results in multiple solutions. Έτσι, η απόλυτη, physical reality is beyond our grasp, and any υποτίθεται properties of the absolute reality can only be validated through how well the resultant αντιληπτή reality agrees with our observations. Σε αυτό το άρθρο, we assumed that the underlying reality obeys our intuitively obvious classical mechanics and asked the question how such a reality would be perceived when filtered through light travel time effects. We demonstrated that this particular treatment could explain certain astrophysical and cosmological phenomena that we observe.

The coordinate transformation in SR can be viewed as a redefinition of space and time (ή, γενικότερα, πραγματικότητα) in order to accommodate the distortions in our perception of motion due to light travel time effects. One may be tempted to argue that SR applies to the “πραγματική” χώρου και του χρόνου, not our perception. This line of argument begs the question, what is real? Reality is only a cognitive model created in our brain starting from our sensory inputs, visual inputs being the most significant. Space itself is a part of this cognitive model. The properties of space are a mapping of the constraints of our perception.

The choice of accepting our perception as a true image of reality and redefining space and time as described in special relativity indeed amounts to a philosophical choice. The alternative presented in the article is inspired by the view in modern neuroscience that reality is a cognitive model in the brain based on our sensory inputs. Adopting this alternative reduces us to guessing the nature of the absolute reality and comparing its predicted projection to our real perception. It may simplify and elucidate some theories in physics and explain some puzzling phenomena in our universe. Ωστόσο,, this option is yet another philosophical stance against the unknowable absolute reality.

Περιορισμοί Αντίληψη και Νόηση στο Σχετικιστική Φυσική

Αυτή η θέση είναι μια συντομευμένη online έκδοση του άρθρου μου που εμφανίζεται στο Γαλιλαίου Ηλεκτροδυναμική το Νοέμβριο, 2008. [Ref: Γαλιλαίου Ηλεκτροδυναμική, Πτήση. 19, Μη. 6, Νοέμβριος / Δεκέμβριος 2008, pp: 103–117] ()

Cognitive neuroscience treats space and time as our brain’s representation of our sensory inputs. Κατά την άποψη αυτή, our perceptual reality is only a distant and convenient mapping of the physical processes causing the sensory inputs. Sound is a mapping of auditory inputs, and space is a representation of visual inputs. Any limitation in the chain of sensing has a specific manifestation on the cognitive representation that is our reality. One physical limitation of our visual sensing is the finite speed of light, which manifests itself as a basic property of our space-time. Σε αυτό το άρθρο, we look at the consequences of the limited speed of our perception, namely the speed of light, and show that they are remarkably similar to the coordinate transformation in special relativity. From this observation, and inspired by the notion that space is merely a cognitive model created out of light signal inputs, we examine the implications of treating special relativity theory as a formalism for describing the perceptual effects due to the finite speed of light. Using this framework, we show that we can unify and explain a wide array of seemingly unrelated astrophysical and cosmological phenomena. Once we identify the manifestations of the limitations in our perception and cognitive representation, we can understand the consequent constraints on our space and time, leading to a new understanding of astrophysics and cosmology.

Key words: cognitive neuroscience; πραγματικότητα; special relativity; light travel time effect; gamma rays bursts; cosmic microwave background radiation.

1. Εισαγωγή

Our reality is a mental picture that our brain creates, starting from our sensory inputs [1]. Although this cognitive map is often assumed to be a faithful image of the physical causes behind the sensing process, the causes themselves are entirely different from the perceptual experience of sensing. The difference between the cognitive representation and their physical causes is not immediately obvious when we consider our primary sense of sight. Αλλά, we can appreciate the difference by looking at the olfactory and auditory senses because we can use our cognitive model based on sight in order to understand the workings of the ‘lesser’ senses. Odors, which may appear to be a property of the air we breathe, are in fact our brain’s representation of the chemical signatures that our noses sense. Παρομοίως, sound is not an intrinsic property of a vibrating body, but our brain’s mechanism to represent the pressure waves in the air that our ears sense. Table I shows the chain from the physical causes of the sensory input to the final reality as the brain creates it. Although the physical causes can be identified for the olfactory and auditory chains, they are not easily discerned for visual process. Since sight is the most powerful sense we possess, we are obliged to accept our brain’s representation of visual inputs as the fundamental reality.

While our visual reality provides an excellent framework for physical sciences, it is important to realize that the reality itself is a model with potential physical or physiological limitations and distortions. The tight integration between the physiology of perception and its representation in the brain was proven recently in a clever experiment using the tactile funneling illusion [2]. This illusion results in a single tactile sensation at the focal point at the center of a stimulus pattern even though no stimulation is applied at that site. In the experiment, the brain activation region corresponded to the focal point where the sensation was perceived, rather than the points where the stimuli were applied, proving that the brain registered perceptions, not the physical causes of the perceived reality. Με άλλα λόγια, for the brain, there is no difference between applying the pattern of the stimuli and applying only one stimulus at the center of the pattern. The brain maps the sensory inputs to regions that correspond to their perception, rather than the regions that physiologically correspond to the sensory stimuli.

Sense modality: Physical cause: Sensed signal: Brain’s model:
Olfactory Chemicals Chemical reactions Smells
Auditory Vibrations Pressure waves Sounds
Visual Unknown Light Space, χρόνο
πραγματικότητα

Table I: The brain’s representation of different sensory inputs. Odors are a representation of chemical compositions and concentration our nose senses. Sounds are a mapping of the air pressure waves produced by a vibrating object. In sight, we do not know the physical reality, our representation is space, and possibly time.

The neurological localization of different aspects of reality has been established in neuroscience by lesion studies. The perception of motion (and the consequent basis of our sense of time), για παράδειγμα, is so localized that a tiny lesion can erase it completely. Cases of patients with such specific loss of a part of reality [1] illustrate the fact that our experience of reality, every aspect of it, is indeed a creation of the brain. Space and time are aspects of the cognitive representation in our brain.

Space is a perceptual experience much like sound. Comparisons between the auditory and visual modes of sensing can be useful in understanding the limitations of their representations in the brain. One limitation is the input ranges of the sensory organs. Ears are sensitive in the frequency range 20Hz-20kHz, and eyes are limited to the visible spectrum. Another limitation, which may exist in specific individuals, is an inadequate representation of the inputs. Such a limitation can lead to tone-deafness and color-blindness, για παράδειγμα. The speed of the sense modality also introduces an effect, such as the time lag between seeing an event and hearing the corresponding sound. For visual perception, a consequence of the finite speed of light is called a Light Travel Time (LTT) αποτέλεσμα. LLT offers one possible interpretation for the observed superluminal motion in certain celestial objects [3,4]: when an object approaches the observer at a shallow angle, it may appear to move much faster than reality [5] due to LTT.

Other consequences of the LTT effects in our perception are remarkably similar to the coordinate transformation of the special relativity theory (SRT). These consequences include an apparent contraction of a receding object along its direction of motion and a time dilation effect. Επί πλέον, a receding object can never appear to be going faster than the speed of light, even if its real speed is superluminal. While SRT does not explicitly forbid it, superluminality is understood to lead to time travel and the consequent violations of causality. An φαινόμενος violation of causality is one of the consequences of LTT, when the superluminal object is approaching the observer. All these LTT effects are remarkably similar to effects predicted by SRT, and are currently taken as ‘confirmation’ that space-time obeys SRT. But instead, space-time may have a deeper structure that, when filtered through LTT effects, results in our αντίληψη that space-time obeys SRT.

Once we accept the neuroscience view of reality as a representation of our sensory inputs, we can understand why the speed of light figures so prominently in our physical theories. The theories of physics are a description of reality. Reality is created out of the readings from our senses, especially our eyes. They work at the speed of light. Thus the sanctity accorded to the speed of light is a feature only of our πραγματικότητα, not the absolute, ultimate reality that our senses are striving to perceive. When it comes to physics that describes phenomena well beyond our sensory ranges, we really have to take into account the role that our perception and cognition play in seeing them. The Universe as we see it is only a cognitive model created out of the photons falling on our retina or on the photo-sensors of the Hubble telescope. Because of the finite speed of the information carrier (namely photons), our perception is distorted in such a way as to give us the impression that space and time obey SRT. They do, but space and time are not the absolute reality. “Space and time are modes by which we think and not conditions in which we live,” as Einstein himself put it. Treating our perceived reality as our brain’s representation of our visual inputs (filtered through the LTT effect), we will see that all the strange effects of the coordinate transformation in SRT can be understood as the manifestations of the finite speed of our senses in our space and time.

Επί πλέον, we will show that this line of thinking leads to natural explanations for two classes of astrophysical phenomena:

Gamma Ray Bursts, which are very brief, αλλά έντονες λάμψεις \gamma rays, currently believed to emanate from cataclysmic stellar collapses, και Radio Sources, which are typically symmetric and seem associated with galactic cores, σήμερα θεωρούνται εκδηλώσεις των ανωμαλιών χώρου-χρόνου ή άστρα νετρονίων. These two astrophysical phenomena appear distinct and unrelated, but they can be unified and explained using LTT effects. This article presents such a unified quantitative model. It will also show that the cognitive limitations to reality due to LTT effects can provide qualitative explanations for such cosmological features as the apparent expansion of the Universe and the Cosmic Microwave Background Radiation (CMBR). Both these phenomena can be understood as related to our perception of superluminal objects. It is the unification of these seemingly distinct phenomena at vastly different length and time scales, along with its conceptual simplicity, that we hold as the indicators of validity of this framework.

2. Similarities between LTT Effects & SRT

The coordinate transformation derived in Einstein’s original paper [6] είναι, in part, a manifestation of the LTT effects and the consequence of imposing the constancy of light speed in all inertial frames. This is most obvious in the first thought experiment, where observers moving with a rod find their clocks not synchronized due to the difference in LTT’s along the length of the rod. Ωστόσο,, in the current interpretation of SRT, the coordinate transformation is considered a basic property of space and time. One difficulty that arises from this formulation is that the definition of the relative velocity between the two inertial frames becomes ambiguous. If it is the velocity of the moving frame as measured by the observer, then the observed superluminal motion in radio jets starting from the core region becomes a violation of SRT. If it is a velocity that we have to deduce by considering LTT effects, then we have to employ the extra ad-hoc assumption that superluminality is forbidden. These difficulties suggest that it may be better to disentangle the LTT effects from the rest of SRT. Although not attempted in this paper, the primary motivation for SRT, namely the covariance of Maxwell’s equations, may be accomplished even without attributing LTT effects to the properties of space and time.

In this Section, we will consider space and time as a part of the cognitive model created by the brain, and illustrate that SRT applies to the cognitive model. The absolute reality (of which the SRT-like space-time is our perception) does not have to obey the restrictions of SRT. Ιδίως, objects are not restricted to subluminal speeds, even though they may appear to us as if they are restricted to subluminal speeds in our perception of space and time. If we disentangle LTT effects from the rest of SRT, we can understand a wide array of phenomena, as shown in this article.

SRT seeks a linear coordinate transformation between coordinate systems in motion with respect to each other. We can trace the origin of linearity to a hidden assumption on the nature of space and time built into SRT, as stated by Einstein [6]: “In the first place it is clear that the equations must be linear on account of the properties of homogeneity which we attribute to space and time.” Because of this assumption of linearity, the original derivation of the transformation equations ignores the asymmetry between approaching and receding objects and concentrates on receding objects. Both approaching and receding objects can be described by two coordinate systems that are always receding from each other. Για παράδειγμα, if a system K is moving with respect to another system να along the positive X axis of να, then an object at rest in K at a positive x is approaching an observer at the origin of να. Unlike SRT, considerations based on LTT effects result in intrinsically different set of transformation laws for objects approaching an observer and those receding from him. More generally, the transformation depends on the angle between the velocity of the object and the observer’s line of sight. Since the transformation equations based on LTT effects treat approaching and receding objects asymmetrically, they provide a natural solution to the twin paradox, για παράδειγμα.

2.1 First Order Perceptual Effects

For approaching and receding objects, the relativistic effects are second order in speed \beta, and speed typically appears as \sqrt{1-\beta^2}. The LTT effects, από την άλλη πλευρά, are first order in speed. The first order effects have been studied in the last fifty years in terms of the appearance of a relativistically moving extended body [7-15]. It has also been suggested that the relativistic Doppler effect can be considered the geometric mean [16] of more basic calculations. The current belief is that the first order effects are an optical illusion to be taken out of our perception of reality. Once these effects are taken out or ‘deconvolved’ from the observations, the ‘real’ space and time are assumed to obey SRT. Note that this assumption is impossible to verify because the deconvolution is an ill-posed problem – there are multiple solutions to the absolute reality that all result in the same perceptual picture. Not all the solutions obey SRT.

The notion that it is the absolute reality that obeys SRT ushers in a deeper philosophical problem. This notion is tantamount to insisting that space and time are in fact ‘intuitions’ beyond sensory perception rather than a cognitive picture created by our brain out of the sensory inputs it receives. A formal critique of the Kantian intuitions of space and time is beyond the scope of this article. Εδώ, we take the position that it is our observed or perceived reality that obeys SRT and explore where it leads us. Με άλλα λόγια, we assume that SRT is nothing but a formalization of the perceptual effects. These effects are not first order in speed when the object is not directly approaching (or receding from) the observer, as we will see later. We will show in this article that a treatment of SRT as a perceptual effect will give us natural solution for astrophysical phenomena like gamma ray bursts and symmetric radio jets.

2.2 Perception of Speed

We first look at how the perception of motion is modulated by LTT effects. As remarked earlier, the transformation equations of SRT treat only objects receding from the observer. Για το λόγο αυτό, we first consider a receding object, flying away from the observer at a speed \beta of the object depends on the real speed b (as shown in Appendix A.1):


\beta_O ,=, \frac{\beta}{1,+,\beta}            (1)
\lim_{\beta\to\infty} \beta_O ,=, 1           (2)

Έτσι, due to LTT effects, an infinite real velocity gets mapped to an apparent velocity \beta_O=1. Με άλλα λόγια, no object can appear to travel faster than the speed of light, entirely consistent with SRT.

Physically, this apparent speed limit amounts to a mapping of c να \infty. This mapping is most obvious in its consequences. Για παράδειγμα, it takes an infinite amount of energy to accelerate an object to an apparent speed \beta_O=1 γιατί, στην πραγματικότητα, we are accelerating it to an infinite speed. This infinite energy requirement can also be viewed as the relativistic mass changing with speed, reaching \infty στο \beta_O=1. Einstein explained this mapping as: “For velocities greater than that of light our deliberations become meaningless; we shall, Ωστόσο,, find in what follows, that the velocity of light in our theory plays the part, physically, of an infinitely great velocity.” Έτσι, for objects receding from the observer, the effects of LTT are almost identical to the consequences of SRT, in terms of the perception of speed.

2.3 Time Dilation
Time Dilation
Figure 1
Εικόνα 1:. Comparison between light travel time (LTT) effects and the predictions of the special theory of relativity (SR). The X-axis is the apparent speed and the Y-axis shows the relative time dilation or length contraction.

LTT effects influence the way time at the moving object is perceived. Imagine an object receding from the observer at a constant rate. As it moves away, the successive photons emitted by the object take longer and longer to reach the observer because they are emitted at farther and farther away. This travel time delay gives the observer the illusion that time is flowing slower for the moving object. It can be easily shown (see Appendix A.2) that the time interval observed \Delta t_O is related to the real time interval \Delta t ως:


  \frac{\Delta t_O}{\Delta t} ,=, \frac{1}{1-\beta_O}          (3)

for an object receding from the observer (\theta=\pi). This observed time dilation is plotted in Fig. 1, where it is compared to the time dilation predicted in SR. Note that the time dilation due to LTT has a bigger magnitude than the one predicted in SR. Ωστόσο,, the variation is similar, with both time dilations tending to \infty as the observed speed tends to c.

2.4 Length Contraction

The length of an object in motion also appears different due to LTT effects. It can be shown (see Appendix A.3) that observed length d_O ως:


\frac{d_O}{d} ,=, {1-\beta_O}           (4)

for an object receding from the observer with an apparent speed of \beta_O. This equation also is plotted in Fig. 1. Note again that the LTT effects are stronger than the ones predicted in SRT.

Fig. 1 illustrates that both time dilation and Lorentz contraction can be thought of as LTT effects. While the actual magnitudes of LTT effects are larger than what SRT predicts, their qualitative dependence on speed is almost identical. This similarity is not surprising because the coordinate transformation in SRT is partly based on LTT effects. If LTT effects are to be applied, as an optical illusion, on top of the consequences of SRT as currently believed, then the total observed length contraction and time dilation will be significantly more than the SRT predictions.

2.5 Doppler Shift
The rest of the article (the sections up to Conclusions) has been abridged and can be read in the PDF version.
()

5 Συμπεράσματα

Σε αυτό το άρθρο, we started with an insight from cognitive neuroscience about the nature of reality. Reality is a convenient representation that our brain creates out of our sensory inputs. This representation, though convenient, is an incredibly distant experiential mapping of the actual physical causes that make up the inputs to our senses. Επί πλέον, limitations in the chain of sensing and perception map to measurable and predictable manifestations to the reality we perceive. One such fundamental constraint to our perceived reality is the speed of light, and the corresponding manifestations, LTT effects. Because space and time are a part of a reality created out of light inputs to our eyes, some of their properties are manifestations of LTT effects, especially on our perception of motion. The absolute, physical reality generating the light inputs does not obey the properties we ascribe to our perceived space and time. We showed that LTT effects are qualitatively identical to those of SRT, noting that SRT only considers frames of reference receding from each other. This similarity is not surprising because the coordinate transformation in SRT is derived based partly on LTT effects, και εν μέρει με την υπόθεση ότι το φως ταξιδεύει με την ίδια ταχύτητα σε σχέση με όλες αδρανειακών. In treating it as a manifestation of LTT, we did not address the primary motivation of SRT, which is a covariant formulation of Maxwell’s equations, as evidenced by the opening statements of Einstein’s original paper [6]. It may be possible to disentangle the covariance of electrodynamics from the coordinate transformation, although it is not attempted in this article.

Unlike SRT, LTT effects are asymmetric. This asymmetry provides a resolution to the twin paradox and an interpretation of the assumed causality violations associated with superluminality. Επί πλέον, the perception of superluminality is modulated by LTT effects, and explains g ray bursts and symmetric jets. As we showed in the article, perception of superluminal motion also holds an explanation for cosmological phenomena like the expansion of the Universe and cosmic microwave background radiation. LTT effects should be considered as a fundamental constraint in our perception, and consequently in physics, rather than as a convenient explanation for isolated phenomena. Given that our perception is filtered through LTT effects, we have to deconvolute them from our perceived reality in order to understand the nature of the absolute, physical reality. This deconvolution, Ωστόσο,, results in multiple solutions. Έτσι, η απόλυτη, physical reality is beyond our grasp, and any υποτίθεται properties of the absolute reality can only be validated through how well the resultant αντιληπτή reality agrees with our observations. Σε αυτό το άρθρο, we assumed that the απόλυτος reality obeys our intuitively obvious classical mechanics and asked the question how such a reality would be perceived when filtered through LTT effects. We demonstrated that this particular treatment could explain certain astrophysical and cosmological phenomena that we observe. The distinction between the different notions of velocity, including the proper velocity and the Einsteinian velocity, was the subject matter of a recent issue of this journal [33].

The coordinate transformation in SRT should be viewed as a redefinition of space and time (ή, γενικότερα, πραγματικότητα) in order to accommodate the distortions in our perception of motion due to LTT effects. The absolute reality behind our perception is not subject to restrictions of SRT. One may be tempted to argue that SRT applies to the ‘real’ χώρου και του χρόνου, not our perception. This line of argument begs the question, what is real? Reality is nothing but a cognitive model created in our brain starting from our sensory inputs, visual inputs being the most significant. Space itself is a part of this cognitive model. The properties of space are a mapping of the constraints of our perception. We have no access to a reality beyond our perception. The choice of accepting our perception as a true image of reality and redefining space and time as described in SRT indeed amounts to a philosophical choice. The alternative presented in the article is prompted by the view in modern neuroscience that reality is a cognitive model in the brain based on our sensory inputs. Adopting this alternative reduces us to guessing the nature of the absolute reality and comparing its predicted projection to our real perception. It may simplify and elucidate some theories in physics and explain some puzzling phenomena in our Universe. Ωστόσο,, this option is yet another philosophical stance against the unknowable absolute reality.

Αναφορές

[1] V.S. Ramachandran, “Οι αναδυόμενες Νου: Reith Διαλέξεις για τις Νευροεπιστήμες” (BBC, 2003).
[2] L.M. Chen, R.M. Friedman, and A. W. Roe, Επιστήμη 302, 881 (2003).
[3] J.A. Biretta, W.B. Sparks, and F. Macchetto, ApJ 520, 621 (1999).
[4] A.J. Zensus, ARA&Α 35, 607 (1997).
[5] M. Rees, Nature 211, 468 (1966).
[6] Α. Einstein, Annalen der Physik 17, 891 (1905).
[7 ] R. Weinstein, Am. J. Phys. 28, 607 (1960).
[8 ] M.L. Boas, Am. J. Phys. 29, 283 (1961).
[9 ] S. Yngström, Arkiv för Fysik 23, 367 (1962).
[10] G.D. Scott and M.R. Viner, Am. J. Phys. 33, 534 (1965).
[11] N.C. McGill, Contemp. Phys. 9, 33 (1968).
[12] R.Bhandari, Am. J. Phys 38, 1200 (1970).
[13] G.D. Scott and H.J. van Driel, Am. J. Phys. 38, 971 (1970).
[14] P.M. Mathews and M. Lakshmanan, Nuovo Cimento 12, 168 (1972).
[15] J. Terrell, Am. J. Phys. 57, 9 (1989).
[16] T.M. Kalotas and A.M. Lee, Am. J. Phys. 58, 187 (1990).
[17] I.F. Mirabel and L.F. Rodríguez, Nature 371, 46 (1994).
[18] I.F. Mirabel and L.F. Rodríguez, ARA&Α 37, 409 (1999).
[19] G. Gisler, Nature 371, 18 (1994).
[20] R.P. Fender, S.T. Garrington, D. J. McKay, T. W. B. Muxlow, G. G. Pooley, R. E. Spencer, Α. M. Stirling, and E.B. Waltman, MNRAS 304, 865 (1999).
[21] R. Α. Perley, J.W. Dreher, and J. J. Cowan, ApJ 285, L35 (1984).
[22] I. Owsianik and J.E. Conway, Α&Α 337, 69 (1998).
[23] A.G. Polatidis, J.E. Conway, and I.Owsianik, σε Proc. 6th European VLBI Network Symposium, edited by Ros, Porcas, Lobanov, Zensus (2002).
[24] M. Thulasidas, The perceptual effect (due to LTT) of a superluminal object appearing as two objects is best illustrated using an animation, which can be found at the author’s web site: http://www.TheUnrealUniverse.com/anim.html
[25] S. Jester, H.J. Roeser, K.Meisenheimer, and R.Perley, Α&Α 431, 477 (2005), astro-ph/0410520.
[26] T. Piran, International Journal of Modern Physics A 17, 2727 (2002).
[27] E.P. Mazets, S.V. Golenetskii, V.N. Ilyinskii, Y. Α. Guryan, and R. L. Aptekar, Ap&SS 82, 261 (1982).
[28] T. Piran, Phys.Rept. 314, 575 (1999).
[29] F. Ryde, ApJ 614, 827 (2005).
[30] F. Ryde, , and R. Svensson, ApJ 566, 210 (2003).
[31] G. Ghisellini, J.Mod.Phys.A (Proc. 19th European Cosmic Ray Symposium – ECRS 2004) (2004), astro-ph/0411106.
[32] F. Ryde and R. Svensson, ApJ 529, L13 (2000).
[33] C. Whitney, Γαλιλαίου Ηλεκτροδυναμική, Special Issues 3, Editor’s Essays, Winter 2005.

Το Unreal Universe — Seeing Light in Science and Spirituality

Ξέρουμε ότι το σύμπαν μας είναι λίγο εξωπραγματικό. Τα αστέρια που βλέπουμε στον ουρανό τη νύχτα, για παράδειγμα, δεν είναι πραγματικά εκεί. Μπορούν να έχουν μετακινηθεί ή ακόμη και πέθανε από τη στιγμή που έχουμε την ευκαιρία να τους δούμε. Η καθυστέρηση αυτή οφείλεται στο χρόνο που χρειάζεται για το φως από τα μακρινά αστέρια και γαλαξίες για να μας φτάσουν. Γνωρίζουμε από αυτή την καθυστέρηση.

The same delay in seeing has a lesser known manifestation in the way we perceive moving objects. It distorts our perception such that something coming towards us would look as though it is coming in faster. Strange as it may sound, this effect has been observed in astrophysical studies. Some of the heavenly bodies do look as though they are moving several times the speed of light, while their “πραγματική” speed is probably a lot lower.

Τώρα, αυτό το αποτέλεσμα θέτει ένα ενδιαφέρον ερώτημα–ποια είναι η “πραγματική” speed? Αν βλέπουμε είναι πιστεύοντας, the speed we see should be the real speed. Στη συνέχεια, και πάλι, γνωρίζουμε από τη στιγμή επίδραση φωτός ταξίδια. So we should correct the speed we see before believing it. Τι κάνει τότε “βλέποντας” σημαίνει? Όταν λέμε ότι βλέπουμε κάτι, τι πραγματικά σημαίνει?

Light in Physics

Βλέποντας περιλαμβάνει το φως, προφανώς. The finite speed of light influences and distorts the way we see things. This fact should hardly come as a surprise because we do know that things are not as we see them. The sun that we see is already eight minutes old by the time we see it. Η καθυστέρηση αυτή δεν είναι μια μεγάλη υπόθεση; αν θέλουμε να γνωρίζουμε τι συμβαίνει στο ήλιο τώρα, το μόνο που έχουμε να κάνουμε είναι να περιμένουμε επί οκτώ λεπτά. We, nonetheless, have to “σωστή” για τις στρεβλώσεις στην αντίληψη μας, λόγω της πεπερασμένης ταχύτητας του φωτός, πριν μπορούμε να εμπιστευόμαστε αυτό που βλέπουμε.

Αυτό που είναι εκπληκτικό (και σπάνια τονίζεται) είναι ότι, όταν πρόκειται για την ανίχνευση κίνησης, δεν μπορούμε να συμφωνήσουμε-υπολογίσει τον ίδιο τρόπο παίρνουμε την καθυστέρηση να δει τον ήλιο. Αν δούμε ένα ουράνιο σώμα που κινείται σε ένα improbably υψηλή ταχύτητα, δεν μπορούμε να καταλάβουμε πόσο γρήγορα και προς ποια κατεύθυνση είναι “πραγματικά” κινείται χωρίς να κάνει περαιτέρω υποθέσεις. Ένας τρόπος αντιμετώπισης αυτής της δυσκολίας είναι να αποδώσουμε τις στρεβλώσεις στην αντίληψη μας για τις θεμελιώδεις ιδιότητες της αρένας της φυσικής — χώρου και του χρόνου. Μια άλλη πορεία δράσης είναι να δεχθεί την αποσύνδεση μεταξύ της αντίληψης μας και το υποκείμενο “πραγματικότητα” και να ασχοληθεί με το θέμα με κάποιο τρόπο.

Einstein chose the first route. In his groundbreaking paper over a hundred years ago, he introduced the special theory of relativity, in which he attributed the manifestations of the finite speed of light to the fundamental properties of space and time. One core idea in special relativity (SR) is that the notion of simultaneity needs to be redefined because it takes some time for light from an event at a distant place to reach us, and we become aware of the event. The concept of “Τώρα” doesn’t make much sense, as we saw, when we speak of an event happening in the sun, για παράδειγμα. Ταυτοχρονισμού είναι σχετική.

Einstein defined simultaneity using the instants in time we detect the event. Ανίχνευση, όπως αυτός ορίζεται, involves a round-trip travel of light similar to Radar detection. We send out light, and look at the reflection. If the reflected light from two events reaches us at the same instant, they are simultaneous.
Another way of defining simultaneity is using sensing — we can call two events simultaneous if the light from them reaches us at the same instant. Με άλλα λόγια, we can use the light generated by the objects under observation rather than sending light to them and looking at the reflection.

Αυτή η διαφορά μπορεί να ακούγεται σαν μια τεχνική ψιλολογήματα, but it does make an enormous difference in the predictions we can make. Επιλογή του Αϊνστάιν οδηγεί σε μια μαθηματική εικόνα που έχει πολλές επιθυμητές ιδιότητες, thereby making further development elegant.

The other possibility has an advantage when it comes to describing objects in motion because it corresponds better with how we measure them. We don’t use Radar to see the stars in motion; εμείς απλώς την αίσθηση του φωτός (ή άλλη ακτινοβολία) που προέρχονται από αυτά. But this choice of using a sensory paradigm, rather than Radar-like detection, to describe the universe results in a slightly uglier mathematical picture.

Η μαθηματική διαφορά γεννά διαφορετικές φιλοσοφικές θέσεις, που με τη σειρά διηθηθεί στην κατανόηση των φυσικών μας εικόνα της πραγματικότητας. Ως απεικόνιση, let us look at an example from astrophysics. Suppose we observe (μέσα από ένα ραδιοτηλεσκόπιο, για παράδειγμα) δύο αντικείμενα στον ουρανό, roughly of the same shape and properties. The only thing we know for sure is that the radio waves from two different points in the sky reach the radio telescope at the same instant in time. We can guess that the waves started their journey quite a while ago.

For symmetric objects, if we assume (όπως κάνουμε συνήθως) ότι τα κύματα που ξεκίνησε το ταξίδι περίπου κατά την ίδια χρονική στιγμή, we end up with a picture of two “πραγματική” συμμετρική λοβοί περισσότερο ή λιγότερο ο τρόπος να τους δείτε ζωντανά.

But there is different possibility that the waves originated from the same object (η οποία είναι σε κίνηση) σε δύο διαφορετικές χρονικές στιγμές, φθάνοντας το τηλεσκόπιο την ίδια στιγμή. This possibility explains some spectral and temporal properties of such symmetric radio sources, which is what I mathematically described in a recent physics article. Τώρα, which of these two pictures should we take as real? Δύο συμμετρικά αντικείμενα όπως τα βλέπουμε ή ένα αντικείμενο που κινείται με τέτοιο τρόπο ώστε να μας δώσει αυτή την εντύπωση? Does it really matter which one is “πραγματική”? Does “πραγματική” σημαίνει τίποτα σε αυτό το πλαίσιο?

The philosophical stance in implied in special relativity answers this question unequivocally. There is an unambiguous physical reality from which we get the two symmetric radio sources, although it takes a bit of mathematical work to get to it. Τα μαθηματικά αποκλείει τη δυνατότητα ένα ενιαίο αντικείμενο κινείται κατά τέτοιο τρόπο ώστε να μιμούνται δύο αντικείμενα. Ουσιαστικά, αυτό που βλέπετε είναι αυτό που είναι εκεί έξω.

Από την άλλη πλευρά, if we define simultaneity using concurrent arrival of light, we will be forced to admit the exact opposite. What we see is pretty far from what is out there. We will confess that we cannot unambiguously decouple the distortions due to the constraints in perception (the finite speed of light being the constraint of interest here) from what we see. There are multiple physical realities that can result in the same perceptual picture. The only philosophical stance that makes sense is the one that disconnects the sensed reality and the causes behind what is being sensed.

Αυτή η αποσύνδεση δεν είναι ασυνήθιστο σε φιλοσοφικές σχολές σκέψης. Φαινομενισμό, για παράδειγμα, έχει την άποψη ότι ο χώρος και ο χρόνος δεν είναι αντικειμενικές πραγματικότητες. Είναι απλώς το μέσο της αντίληψής μας. Όλα τα φαινόμενα που συμβαίνουν στο χώρο και το χρόνο είναι απλώς δέσμες της αντίληψης μας. Με άλλα λόγια, χώρος και ο χρόνος είναι γνωστικές δομές που προκύπτουν από την αντίληψη. Έτσι, όλες οι φυσικές ιδιότητες που αποδίδουμε στο χώρο και το χρόνο μπορεί να εφαρμοστεί μόνο με τη φαινομενική πραγματικότητα (η πραγματικότητα όπως την αντιλαμβάνονται). Το νοούμενο πραγματικότητα (η οποία κατέχει τις φυσικές αιτίες της αντίληψης μας), Αντίθετα, παραμένει πέρα ​​από τις γνωστικές δυνατότητές μας.

The ramifications of the two different philosophical stances described above are tremendous. Since modern physics seems to embrace a non-phenomenalistic view of space and time, έχει περιέλθει σε αντίθεση με αυτόν τον κλάδο της φιλοσοφίας. Το χάσμα μεταξύ της φιλοσοφίας και της φυσικής έχει αυξηθεί σε τέτοιο βαθμό που το νομπελίστα φυσικός, Steven Weinberg, Αναρωτηθήκατε (στο βιβλίο του “Τα όνειρα της Τελικής Θεωρία”) γιατί η συμβολή από τη φιλοσοφία της φυσικής ήταν τόσο εκπληκτικά μικρό. Προτρέπει επίσης τους φιλοσόφους να κάνουν δηλώσεις, όπως, “Νοούμενο πραγματικότητα Είτε «προκαλεί φαινομενική πραγματικότητα’ ή αν «νοούμενο πραγματικότητα είναι ανεξάρτητη από μας, ανίχνευσης’ ή αν «έχουμε την αίσθηση νοούμενο πραγματικότητα,’ το πρόβλημα παραμένει ότι η έννοια της νοούμενο πραγματικότητα είναι μια εντελώς παρωχημένη ιδέα για την ανάλυση της επιστήμης.”

Ένα, σχεδόν τυχαία, δυσκολία στον επαναπροσδιορισμό των επιπτώσεων της πεπερασμένης ταχύτητας του φωτός καθώς οι ιδιότητες του χώρου και του χρόνου είναι ότι οποιαδήποτε επίδραση που εμείς καταλαβαίνουμε παίρνει αμέσως υποβιβαστεί στην σφαίρα των οπτικών ψευδαισθήσεων. Για παράδειγμα, η καθυστέρηση οκτώ λεπτά να δει τον ήλιο, because we readily understand it and disassociate from our perception using simple arithmetic, θεωρείται μια απλή οπτική ψευδαίσθηση. Ωστόσο,, οι στρεβλώσεις στην αντίληψη μας αντικειμένων που κινούνται γρήγορα, αν προέρχονται από την ίδια πηγή που θεωρείται ιδιοκτησία του χώρου και του χρόνου, επειδή είναι πιο πολύπλοκη.

We have to come to terms with the fact that when it comes to seeing the universe, δεν υπάρχει τέτοιο πράγμα όπως μια οπτική ψευδαίσθηση, το οποίο είναι ίσως ό, τι Γκαίτε επεσήμανε όταν είπε, “Οπτική ψευδαίσθηση είναι οπτικό αλήθεια.”

Η διάκριση (ή η έλλειψη αυτής) μεταξύ οφθαλμαπάτη και η αλήθεια είναι μία από τις παλαιότερες συζητήσεις στη φιλοσοφία. Μετά από όλα, πρόκειται για τη διάκριση μεταξύ γνώσης και πραγματικότητας. Η γνώση θεωρείται άποψή μας για κάτι που, στην πραγματικότητα, είναι “πράγματι η περίπτωση.” Με άλλα λόγια, η γνώση είναι μια αντανάκλαση, ή μια νοητική εικόνα του κάτι εξωτερικό, όπως φαίνεται στο παρακάτω σχήμα.
Commonsense view of reality
Σε αυτή την εικόνα, το μαύρο βέλος αναπαριστά τη διαδικασία δημιουργίας της γνώσης, η οποία περιλαμβάνει την αντίληψη, γνωστικές δραστηριότητες, και η άσκηση του καθαρού λόγου. Αυτή είναι η εικόνα ότι η φυσική έχει έρθει για να δεχθεί.
Alternate view of reality
Αν και αναγνωρίζει ότι η αντίληψή μας μπορεί να είναι ατελής, φυσική υποθέτει ότι μπορούμε να έρθουμε πιο κοντά και πιο κοντά στην εξωτερική πραγματικότητα μέσω της όλο και λεπτότερα πειραματισμό, και, πιο σημαντικό, μέσω της καλύτερης θεωρητικοποίηση. Οι Ειδική και Γενική Θεωρία της Σχετικότητας είναι παραδείγματα λαμπρή εφαρμογές αυτής της άποψης της πραγματικότητας όπου οι απλές φυσικές αρχές που επιδιώκει αδυσώπητα χρησιμοποιώντας την τεράστια μηχανή του καθαρού λόγου σε λογικά αναπόφευκτη συμπεράσματά τους.

Αλλά υπάρχει και μια άλλη, εναλλακτική άποψη της γνώσης και της πραγματικότητας που έχει εδώ και πολύ καιρό. Αυτή είναι η άποψη που αφορά την αντιληπτή πραγματικότητα ως μια εσωτερική γνωστική αναπαράσταση των αισθητικών ερεθισμάτων μας, όπως απεικονίζεται παρακάτω.

Κατά την άποψη αυτή, γνώση και αντίληψη της πραγματικότητας είναι και οι δύο εσωτερικές γνωστικές δομές, παρόλο που έχουμε έρθει να σκεφτείτε τους ως ξεχωριστά. Τι είναι εξωτερική, δεν είναι η πραγματικότητα όπως την αντιλαμβανόμαστε, αλλά ένα άγνωστο πρόσωπο που δημιουργούν τις φυσικές αιτίες πίσω από αισθητήριες είσοδοι. Στην απεικόνιση, το πρώτο βέλος αναπαριστά τη διαδικασία της αίσθησης, και το δεύτερο βέλος αντιπροσωπεύει τις γνωστικές και λογικά βήματα συλλογισμού. Για να εφαρμόσετε αυτήν την άποψη της πραγματικότητας και της γνώσης, θα πρέπει να μαντέψει τη φύση της απόλυτης πραγματικότητας, άγνωστο, όπως είναι. Ένας πιθανός υποψήφιος για την απόλυτη πραγματικότητα είναι νευτώνεια μηχανική, η οποία δίνει μια λογική πρόβλεψη για την αντιληπτή πραγματικότητα μας.

Για να συνοψίσουμε, όταν προσπαθούμε να χειριστεί τις στρεβλώσεις που οφείλονται στην αντίληψη, έχουμε δύο επιλογές, ή δύο πιθανές φιλοσοφικές θέσεις. Η μία είναι να αποδεχθεί τις στρεβλώσεις ως μέρος του χώρου και του χρόνου μας, as SR does. The other option is to assume that there is a “higher” πραγματικότητα διαφορετική από αίσθησης πραγματικότητας μας, τις ιδιότητες του οποίου μπορούμε μόνο να εικάσουμε. Με άλλα λόγια, μία επιλογή είναι να ζούμε με την παραμόρφωση, ενώ η άλλη είναι να προτείνει μορφωμένοι μαντεύει για την υψηλότερη πραγματικότητα. Neither of these options is particularly attractive. Αλλά η εικασία διαδρομή είναι παρόμοια με την άποψη αποδεκτή φαινομενισμό. Οδηγεί επίσης φυσικά για το πώς η πραγματικότητα προβάλλεται στη γνωστική νευροεπιστήμη, που μελετά τους βιολογικούς μηχανισμούς πίσω από τη γνωστική.

In my view, the two options are not inherently distinct. The philosophical stance of SR can be thought of as coming from a deep understanding that space is merely a phenomenal construct. If the sense modality introduces distortions in the phenomenal picture, we may argue that one sensible way of handling it is to redefine the properties of the phenomenal reality.

Role of Light in Our Reality

Από τη σκοπιά της γνωσιακής νευροεπιστήμης, ό, τι βλέπουμε, νόημα, αισθάνονται και σκέφτονται είναι το αποτέλεσμα των νευρωνικών διασυνδέσεων στον εγκέφαλό μας και τα μικροσκοπικά ηλεκτρικά σήματα σε αυτά. Η άποψη αυτή πρέπει να είναι σωστά. Τι άλλο υπάρχει? Όλες οι σκέψεις και τις ανησυχίες μας, γνώσεις και πεποιθήσεις, εγώ και η πραγματικότητα, ζωής και θανάτου — τα πάντα είναι απλώς νευρωνική βολές στο ένα και μισό κιλά κολλώδης, γκρίζο υλικό που ονομάζουμε εγκέφαλο μας. Δεν υπάρχει τίποτα άλλο. Τίποτα!

Όντως, αυτή η άποψη της πραγματικότητας στη νευρολογία είναι μια ακριβής ηχώ της φαινομενισμό, η οποία θεωρεί ότι τα πάντα μια δέσμη της αντίληψης ή διανοητικά κατασκευάσματα. Χώρος και χρόνος είναι επίσης γνωστικές δομές στον εγκέφαλό μας, όπως όλα τα άλλα. Είναι νοητικές εικόνες το μυαλό μας εξυφαίνουν από τις αισθητηριακές εισόδους που δέχονται οι αισθήσεις μας. Που παράγεται από την αισθητηριακή αντίληψη μας και κατασκευάζονται με τη γνωστική διαδικασία μας, το χωροχρονικό συνεχές είναι η αρένα της φυσικής. Από όλες τις αισθήσεις μας, θέαμα είναι μακράν το κυρίαρχο. Η αισθητηριακή πληροφορία στην όραση είναι το φως. Σε ένα χώρο που δημιουργήθηκε από τον εγκέφαλο από το φως που πέφτει σε αμφιβληστροειδείς μας (ή για τους αισθητήρες φωτογραφία του τηλεσκοπίου Hubble), είναι μια έκπληξη το γεγονός ότι τίποτα δεν μπορεί να ταξιδέψει γρηγορότερα από το φως?

Αυτή η φιλοσοφική στάση είναι η βάση του βιβλίου μου, Το Unreal Universe, η οποία διερευνά τα κοινά θέματα φυσικής και φιλοσοφίας δεσμευτική. Αυτές οι φιλοσοφικές συλλογισμοί πάρετε συνήθως μια κακή ραπ από εμάς τους φυσικούς. Για τους φυσικούς, Η φιλοσοφία είναι ένα εντελώς διαφορετικό πεδίο, άλλο σιλό της γνώσης. Πρέπει να αλλάξουμε αυτή την πεποίθηση και να εκτιμήσουν την επικάλυψη μεταξύ των διαφόρων σιλό της γνώσης. It is in this overlap that we can expect to find breakthroughs in human thought.

This philosophical grand-standing may sound presumptuous and the veiled self-admonition of physicists understandably unwelcome; but I am holding a trump card. Based on this philosophical stance, I have come up with a radically new model for two astrophysical phenomena, and published it in an article titled, “Είναι Radio Πηγές και Gamma Ray Εκρήξεις Luminal Ομολογίες?” in the well-known International Journal of Modern Physics D in June 2007. This article, which soon became one of the top accessed articles of the journal by Jan 2008, is a direct application of the view that the finite speed of light distorts the way we perceive motion. Because of these distortions, the way we see things is a far cry from the way they are.

We may be tempted to think that we can escape such perceptual constraints by using technological extensions to our senses such as radio telescopes, electron microscopes or spectroscopic speed measurements. Μετά από όλα, these instruments do not have “αντίληψη” per se and should be immune to the human weaknesses we suffer from. But these soulless instruments also measure our universe using information carriers limited to the speed of light. We, Ως εκ τούτου,, cannot escape the basic constraints of our perception even when we use modern instruments. Με άλλα λόγια, the Hubble telescope may see a billion light years farther than our naked eyes, but what it sees is still a billion years older than what our eyes see.

Our reality, whether technologically enhanced or built upon direct sensory inputs, is the end result of our perceptual process. To the extent that our long range perception is based on light (and is therefore limited to its speed), we get only a distorted picture of the universe.

Light in Philosophy and Spirituality

Το στρίψιμο σε αυτή την ιστορία του φωτός και η πραγματικότητα είναι ότι φαίνεται να γνωρίζει όλα αυτά για ένα μεγάλο χρονικό διάστημα. Classical philosophical schools seem to have thought along lines very similar to Einstein’s thought experiment.

Once we appreciate the special place accorded to light in modern science, we have to ask ourselves how different our universe would have been in the absence of light. Φυσικά, light is only a label we attach to a sensory experience. Ως εκ τούτου,, to be more accurate, we have to ask a different question: if we did not have any senses that responded to what we call light, would that affect the form of the universe?

The immediate answer from any normal (that is, non-philosophical) person is that it is obvious. If everybody is blind, everybody is blind. But the existence of the universe is independent of whether we can see it or not. Is it though? What does it mean to say the universe exists if we cannot sense it? Ah… the age-old conundrum of the falling tree in a deserted forest. Remember, the universe is a cognitive construct or a mental representation of the light input to our eyes. It is not “out there,” but in the neurons of our brain, as everything else is. In the absence of light in our eyes, there is no input to be represented, ergo no universe.

If we had sensed the universe using modalities that operated at other speeds (echolocation, για παράδειγμα), it is those speeds that would have figured in the fundamental properties of space and time. This is the inescapable conclusion from phenomenalism.

Ο ρόλος του φωτός στη δημιουργία ή πραγματικότητα το σύμπαν μας είναι στην καρδιά της Δυτικής θρησκευτικής σκέψης. Ένα σύμπαν που στερείται του φωτός δεν είναι απλά ένας κόσμος όπου θα έχουν σβήσει τα φώτα. Είναι πράγματι ένα σύμπαν στερείται η ίδια, ένα σύμπαν που δεν υπάρχει. Είναι σε αυτό το πλαίσιο που πρέπει να καταλάβουμε τη σοφία πίσω από τη δήλωση ότι “η γη ήταν χωρίς μορφή, και άκυρη” μέχρι που ο Θεός έκανε το φως να είναι, λέγοντας “Γενηθήτω φως.”

Το Κοράνι λέει επίσης, “Αλλάχ είναι το φως του ουρανού και της γης,” η οποία αντικατοπτρίζεται σε ένα από τα αρχαία Ινδικά κείμενα: “Μόλυβδος μου από το σκοτάδι στο φως, οδηγήσει μου από το απατηλό στο πραγματικό.” Ο ρόλος του φωτός στη λήψη μας από το εξωπραγματικό κενό (η ανυπαρξία) σε μια πραγματικότητα ήταν πράγματι κατανοητό για μια μακρά, καιρό. Είναι πιθανό ότι οι αρχαίοι άγιοι και οι προφήτες γνώριζαν πράγματα που μόλις τώρα αρχίζουν να αποκαλύψει με όλα υποτίθεται προόδους μας στη γνώση?

Ξέρω ότι μπορεί να σπεύδουν όπου οι άγγελοι φοβούνται να βαδίσουν, για τη νέα ερμηνεία των γραφών είναι ένα επικίνδυνο παιχνίδι. Such foreign interpretations are seldom welcome in the theological circles. Αλλά εγώ αναζητήσουν καταφύγιο στο γεγονός ότι ψάχνω για σύμπτωση σε μεταφυσικές απόψεις του πνευματικές φιλοσοφίες, without diminishing their mystical or theological value.

The parallels between the noumenal-phenomenal distinction in phenomenalism and the Brahman-Maya distinction in Advaita are hard to ignore. This time-tested wisdom on the nature of reality from the repertoire of spirituality is now reinvented in modern neuroscience, που αντιμετωπίζει την πραγματικότητα ως γνωστική αναπαράσταση δημιουργήθηκε από τον εγκέφαλο. Ο εγκέφαλος χρησιμοποιεί τις αισθητήριες είσοδοι, μνήμη, συνείδησης, και ακόμη και τη γλώσσα ως συστατικά σε επινοώντας την αίσθηση της πραγματικότητας. Η άποψη της πραγματικότητας, Ωστόσο,, Είναι κάτι που η φυσική είναι ακόμη να συμβιβαστεί με. Αλλά στο βαθμό που η αρένα του (χώρου και του χρόνου) είναι ένα μέρος της πραγματικότητας, Φυσική δεν είναι απρόσβλητες από τη φιλοσοφία.

Όπως έχουμε προωθήσει περαιτέρω και περισσότερο τα όρια της γνώσης μας, αρχίζουμε να ανακαλύψει μέχρι τώρα ανυποψίαστος και συχνά προκαλεί έκπληξη διασυνδέσεις μεταξύ των διαφόρων κλάδων των ανθρώπινων προσπαθειών. Σε τελική ανάλυση, πώς μπορούν οι διαφορετικές περιοχές της γνώσης μας είναι ανεξάρτητη από κάθε άλλη, όταν όλη η γνώση μας βρίσκεται στον εγκέφαλό μας? Η γνώση είναι μια γνωστική αναπαράσταση των εμπειριών μας. Αλλά στη συνέχεια,, έτσι είναι η πραγματικότητα; είναι μια νοητική αναπαράσταση των αισθητικών ερεθισμάτων μας. Είναι λάθος να πιστεύουμε ότι η γνώση είναι η εσωτερική αναπαράσταση μας από μια εξωτερική πραγματικότητα, και, επομένως, διαφορετικό από αυτό. Η γνώση και η πραγματικότητα είναι δύο εσωτερικές γνωστικές δομές, παρόλο που έχουμε έρθει να σκεφτείτε τους ως ξεχωριστά.

Recognizing and making use of the interconnections among the different domains of human endeavour may be the catalyst for the next breakthrough in our collective wisdom that we have been waiting for.