Speed of Light

The speed of light being a constant sounds like a simple statement. But there is more to it, quite a bit more. Let’s look at what this constancy really means. 언뜻, it says that if you are standing somewhere, and there is a ray of light going from your right to left, it has a speed C. And another ray of light going from left to right also has a speed C. 지금까지, so good. Now let’s say you are in a rocket ship, 아래 그림과 같이, moving from right to left.

계속 읽기

상대성의 특수 이론

우리는 아인슈타인과 특수 상대성에 대해들을 때 (또는 상대성의 특수 이론, 실제 이름을 사용), 우리는 유명한 생각 E = mc^2 방정식, 그리고 쌍둥이 역설처럼 이상한 일. 그 일이 모든 진실하고 중요하지만, SR이 해결하려고하는 문제는 완전히 다른 하나이다. 물리학의 기본 원리를 방​​어하기위한 시도이다.
계속 읽기

Quantum Field Theory

In this post on Quantum Mechanics (QM), we will go a bit beyond it and touch upon Quantum Field Theory – the way it is used in particle physics. In the last couple of posts, I outlined a philosophical introduction to QM, as well as its historical origin – how it came about as an ad-hoc explanation of the blackbody radiation, and a brilliant description of the photoelectric effect.
계속 읽기

Historical Origin of Quantum Mechanics

이 섹션에서, we will try to look at the historical origin of Quantum Mechanics, which is usually presented succinctly using scary looking mathematical formulas. The role of mathematics in physics, as Richard Feynman explains (in his lectures on QED given in Auckland, New Zealand in 1979, available on YouTube, but as poor quality recordings) is purely utilitarian.
계속 읽기

양자 역학

양자 역학 (QM) is the physics of small things. How do they behave and how do they interact with each other? Conspicuously absent from this framework of QM is why. Why small things do what they do is a question QM leaves alone. 그리고, if you are to make any headway into this subject, your best bet is to curb your urge to ask why. Nature is what she is. Our job is to understand the rules by which she plays the game of reality, and do our best to make use of those rules to our advantage in experiments and technologies. Ours is not to reason why. 정말로.

계속 읽기

Classical Physics

The main difficulty in describing particle physics to general public is the fact that it is built on modern physics. Even if you are physics aficionado and did extremely well in your high school physics, what you have learned and loved is classical physics. The difference between classical physics and modern physics is not just more physics, but a completely new way of looking at the reality around us.
계속 읽기

환원

우리의 모든 과학적 노력에, 우리는 일을 이해하고 연구하는 유사한 높은 수준의 기술을 사용. 가장 일반적인 방법은 환원이다. 그것은 행동이 믿음을 기반으로, 크고 복잡한 오브젝트의 특성 및 구조는 단순한 구성 요소의 관점에서 이해 될 수있다. 환언, 우리는 전체를 이해하려고 노력 (우주, 예를 들어) 작은 측면에서, 감소 성분 (이러한 입자로).

계속 읽기

입자와 상호 작용

최근에, 나는 DESY에 여행을 계획하고 있었다 내 딸의 친구들을 입자와 상호 작용에 대한 이야기​​를했다, 독일과에 대한 모든 무엇의 아이디어를 가지고 싶어. 이러한 종류의 내 첫 번째 이야기로, 내가 아는하지 않았기 때문에 나는 약간 긴장 수준을, 및 배경, 나는의 이야기를 말뚝한다. 나는 너무 기본적인 만들고 싶어하지 않았다, 나는 시간 낭비 일 것이다라고 생각하는. 도 아니다 나는 너무 기술적 만들고 싶어 않았다, 또한 다른 방법으로는 쓸모 만들 것이다.

계속 읽기

Sensory and Physical Worlds

Animals have different sensory capabilities compared to us humans. Cats, 예를 들어, can hear up to 60kHz, while the highest note we have ever heard was about 20kHz. 분명히, we could hear that high a note only in our childhood. 그래서, if we are trying to pull a fast one on a cat with the best hifi multi-channel, Dolby-whatever recording of a mouse, we will fail pathetically. It won’t be fooled because it lives in a different sensory world, while sharing the same physical world as ours. There is a humongous difference between the sensory and physical worlds.

계속 읽기