Speed of Light

The speed of light being a constant sounds like a simple statement. But there is more to it, quite a bit more. Let’s look at what this constancy really means. 一見したところで, it says that if you are standing somewhere, and there is a ray of light going from your right to left, it has a speed C言語. And another ray of light going from left to right also has a speed C言語. So far, so good. Now let’s say you are in a rocket ship, 次の図に示すように、, moving from right to left.

続きを読む

特殊相対性理論

私たちは、アインシュタイン、特殊相対性理論について聞くと (または特殊相対性理論, 実名を使用するには), 私たちは、有名なのだと思います E = mc^2 方程式, そして双子のパラドックスのような奇妙なこと. それらのものは、すべて真実かつ重要であるが、, SRが解決しようとする問題は、全く異なるものです. 物理学の基本原理を守るための試みであります.
続きを読む

Quantum Field Theory

In this post on Quantum Mechanics (QM), we will go a bit beyond it and touch upon Quantum Field Theory – the way it is used in particle physics. In the last couple of posts, I outlined a philosophical introduction to QM, as well as its historical origin – how it came about as an ad-hoc explanation of the blackbody radiation, and a brilliant description of the photoelectric effect.
続きを読む

Historical Origin of Quantum Mechanics

このセクションでは、, we will try to look at the historical origin of Quantum Mechanics, which is usually presented succinctly using scary looking mathematical formulas. The role of mathematics in physics, as Richard Feynman explains (in his lectures on QED given in Auckland, New Zealand in 1979, available on YouTube, but as poor quality recordings) is purely utilitarian.
続きを読む

量子力学

量子力学 (QM) is the physics of small things. How do they behave and how do they interact with each other? Conspicuously absent from this framework of QM is why. Why small things do what they do is a question QM leaves alone. そして, if you are to make any headway into this subject, your best bet is to curb your urge to ask why. Nature is what she is. Our job is to understand the rules by which she plays the game of reality, and do our best to make use of those rules to our advantage in experiments and technologies. Ours is not to reason why. Really.

続きを読む

Classical Physics

The main difficulty in describing particle physics to general public is the fact that it is built on modern physics. Even if you are physics aficionado and did extremely well in your high school physics, what you have learned and loved is classical physics. The difference between classical physics and modern physics is not just more physics, but a completely new way of looking at the reality around us.
続きを読む

還元主義

すべての私達の科学的な努力で, 私たちは物事を理解し、研究するために類似した高レベルの技術を使用します. 最も一般的な技術は、還元主義であります. それは、行動、その信念に基づいています, 大規模で複雑なオブジェクトの特性および構造はその単純な構成要素の観点から理解することができます. 言い換えると, 我々は全体を理解しよう (宇宙, 例えば) 小さい方の面で, 減少成分 (そのような粒子として).

続きを読む

粒子との相互作用

最近, 私はDESYへの旅行を計画した娘のクラスメートに粒子との相互作用について講演を行いました, それはすべてについて何であったかのアイデアを持っていると思っドイツ、. この種の私の最初の話として、, 私は知らなかったので、私は少し緊張していたどのレベル, そして、背景, 私は、話をペグする必要があります. 私はそれがあまりにも基本的な作りたくありませんでした, 私は時間の無駄だろうと思っています. また私はそれがあまりにも技術的にしたいんでした, また、別の方法でそれが無用にすることになります.

続きを読む

Sensory and Physical Worlds

Animals have different sensory capabilities compared to us humans. Cats, 例えば, can hear up to 60kHz, while the highest note we have ever heard was about 20kHz. 明らかに, we could hear that high a note only in our childhood. そう, if we are trying to pull a fast one on a cat with the best hifi multi-channel, Dolby-whatever recording of a mouse, we will fail pathetically. It won’t be fooled because it lives in a different sensory world, while sharing the same physical world as ours. There is a humongous difference between the sensory and physical worlds.

続きを読む