Моделирование Модели

Mathematical finance is built on a couple of assumptions. The most fundamental of them is the one on market efficiency. It states that the market prices every asset fairly, and the prices contain all the information available in the market. Другими словами, you cannot glean any more information by doing any research or technical analysis, or indeed any modeling. If this assumption doesn’t pan out, then the quant edifice we build on top of it will crumble. Some may even say that it did crumble in 2008.

We know that this assumption is not quite right. If it was, there wouldn’t be any transient arbitrage opportunities. But even at a more fundamental level, the assumption has shaky justification. The reason that the market is efficient is that the practitioners take advantage of every little arbitrage opportunity. Другими словами, the markets are efficient because they are not so efficient at some transient level.

Mark Joshi, in his well-respected book, “The Concepts and Practice of Mathematical Finance,” points out that Warren Buffet made a bundle of money by refusing to accept the assumption of market efficiency. На самом деле, the weak form of market efficiency comes about because there are thousands of Buffet wannabes who keep their eyes glued to the ticker tapes, waiting for that elusive mispricing to show up.

Given that the quant careers, and literally trillions of dollars, are built on the strength of this assumption, we have to ask this fundamental question. Is it wise to trust this assumption? Are there limits to it?

Let’s take an analogy from physics. I have this glass of water on my desk now. Still water, in the absence of any turbulence, has a flat surface. We all know why – gravity and surface tension and all that. But we also know that the molecules in water are in random motion, in accordance with the same Brownian process that we readily adopted in our quant world. One possible random configuration is that half the molecules move, сказать, to the left, and the other half to the right (so that the net momentum is zero).

If that happens, the glass on my desk will break and it will make a terrible mess. But we haven’t heard of such spontaneous messes (from someone other than our kids, that is.)

The question then is, can we accept the assumption on the predictability of the surface of water although we know that the underlying motion is irregular and random? (I am trying to make a rather contrived analogy to the assumption on market efficiency despite the transient irregularities.) The answer is a definite yes. Конечно, we take the flatness of liquid surfaces for granted in everything from the useless lift-pumps and siphons of our grade school physics books all the way to dams and hydro-electric projects.

So what am I quibbling about? Why do I harp on the possibility of uncertain foundations? I have two reasons. One is the question of scale. In our example of surface flatness vs. random motion, we looked at a very large collection, где, through the central limit theorem and statistical mechanics, we expect nothing but regular behavior. If I was studying, например, how an individual virus propagates through the blood stream, I shouldn’t make any assumptions on the regularity in the behavior of water molecules. This matter of scale applies to quantitative finance as well. Are we operating at the right scale to ignore the shakiness of the market efficiency assumption?

The second reason for mistrusting the pricing models is a far more insidious one. Let me see if I can present it rather dramatically using my example of the tumbler of water. Suppose we make a model for the flatness of the water surface, and the tiny ripples on it as perturbations or something. Then we proceed to use this model to extract tiny amounts of energy from the ripples.

The fact that we are using the model impacts the flatness or the nature of the ripples, affecting the underlying assumptions of the model. Сейчас, imagine that a large number of people are using the same model to extract as much energy as they can from this glass of water. My hunch is that it will create large scale oscillations, perhaps generating configurations that do indeed break the glass and make a mess. Discounting the fact that this hunch has its root more in the financial mess that spontaneously materialized rather than any solid physics argument, we can still see that large fluctuations do indeed seem to increase the energy that can be extracted. Аналогично, large fluctuations (and the black swans) may indeed be a side effect of modeling.

Комментарии

3 thoughts on “Modeling the Models”

  1. Вот это да, curved yet smoothed

    As a lover of real abstract, I enjoyed reading your post.
    Hope we will get chance to read foundations. And more about human quantum needs in days to come by, from you!

    Благодаря!

  2. I look at efficiency in another manner.

    lets say u are playing poker with 10 other people and u r a newbie but atleast some of them are pros. so they can read your body language and guess your thoughts but u take decisions only on the basis of the cards in hand and on the table. what is happening here is that the pros are doing arbitrage as they have gained enough experience and u r working on an efficient market hypothesis as the only way to take decisions is maybe through probabilities. now as u keep playing for many days and lose money to the pros, u suddenly realize one day that whenever u used to shake your legs they knew u were bluffing. now u start to look for similar body language signs from other newbies and maybe even pros. so now the market is inefficient.

    bottomline start with the efficient hypothesis till u are able to understand the body language of the market. 😛

Комментарии закрыты.