카테고리 아카이브: 물리학

물리학은 내 첫 사랑이었다. 이 범주 내 마음에 게시물 가장 가까운 포함. 스물 년 지금부터, 이 블로그는 통과하면, 이 범주는 아마 내 대부분의 지속적인 통찰력을 개최합니다. 그리고 이백년 지금부터, 나는 전혀 기억하고 있어요 경우, 이들 통찰력이 될 것입니다; 하지 내가 사람의 종류, 걸 돈, 도 아무것도. Only for my first and last love…

Interpretation of Special Relativity

When we looked at Quantum Mechanics, we talked about its various interpretations. The reason we have such interpretations, 내가 말했다, is that QM deals with a reality that we have no access to, through our sensory and perceptual apparatuses. 한편, Special Relativity is about macro objects in motion, and we have no problem imagining such things. So why would we need to have an interpretation? The answer is a subtle one.
계속 읽기

Speed of Light

The speed of light being a constant sounds like a simple statement. But there is more to it, quite a bit more. Let’s look at what this constancy really means. 언뜻, it says that if you are standing somewhere, and there is a ray of light going from your right to left, it has a speed C. And another ray of light going from left to right also has a speed C. 지금까지, so good. Now let’s say you are in a rocket ship, 아래 그림과 같이, moving from right to left.

계속 읽기

상대성의 특수 이론

우리는 아인슈타인과 특수 상대성에 대해들을 때 (또는 상대성의 특수 이론, 실제 이름을 사용), 우리는 유명한 생각 E = mc^2 방정식, 그리고 쌍둥이 역설처럼 이상한 일. 그 일이 모든 진실하고 중요하지만, SR이 해결하려고하는 문제는 완전히 다른 하나이다. 물리학의 기본 원리를 방​​어하기위한 시도이다.
계속 읽기

Quantum Field Theory

In this post on Quantum Mechanics (QM), we will go a bit beyond it and touch upon Quantum Field Theory – the way it is used in particle physics. In the last couple of posts, I outlined a philosophical introduction to QM, as well as its historical origin – how it came about as an ad-hoc explanation of the blackbody radiation, and a brilliant description of the photoelectric effect.
계속 읽기

Historical Origin of Quantum Mechanics

이 섹션에서, we will try to look at the historical origin of Quantum Mechanics, which is usually presented succinctly using scary looking mathematical formulas. The role of mathematics in physics, as Richard Feynman explains (in his lectures on QED given in Auckland, New Zealand in 1979, available on YouTube, but as poor quality recordings) is purely utilitarian.
계속 읽기

양자 역학

양자 역학 (QM) is the physics of small things. How do they behave and how do they interact with each other? Conspicuously absent from this framework of QM is why. Why small things do what they do is a question QM leaves alone. 그리고, if you are to make any headway into this subject, your best bet is to curb your urge to ask why. Nature is what she is. Our job is to understand the rules by which she plays the game of reality, and do our best to make use of those rules to our advantage in experiments and technologies. Ours is not to reason why. 정말로.

계속 읽기

Classical Physics

The main difficulty in describing particle physics to general public is the fact that it is built on modern physics. Even if you are physics aficionado and did extremely well in your high school physics, what you have learned and loved is classical physics. The difference between classical physics and modern physics is not just more physics, but a completely new way of looking at the reality around us.
계속 읽기

환원

우리의 모든 과학적 노력에, 우리는 일을 이해하고 연구하는 유사한 높은 수준의 기술을 사용. 가장 일반적인 방법은 환원이다. 그것은 행동이 믿음을 기반으로, 크고 복잡한 오브젝트의 특성 및 구조는 단순한 구성 요소의 관점에서 이해 될 수있다. 환언, 우리는 전체를 이해하려고 노력 (우주, 예를 들어) 작은 측면에서, 감소 성분 (이러한 입자로).

계속 읽기